U2C-12 USB-I2C/SPI/GPIO
Interface Adapter Users Manual



U2C-12 USB-I12C/SPI/GPIO Interface Adapter Users Manual
Copyright © 2009 Diolan






Table of Contents

T (0T [T i o o [PPSR 7
1. 12C Bridge Software and U2C-12 Hardware Drivers Installation ..............ccccoooiiiiiiiiiiiiiiin e, 8
1.1, System REQUIFEMENTS ......uuiiiiiii et e e e e et e e e eaa s 8
1.2. Software INSTallation ...........ooiiiiii e 8
1.2.1. Driver Signing SettNgS .....c.uuiiiiiiiiieiii e e e eaean 8
1.2.2. InStalling 12C BriAgE .....uiiiiiiieeeei et e e 10
1.3. Hardware Drivers Installation ... e 13
2. Control Panel APPlICALION ...........ciiiiiiiii e e 17
2.1. Control Panel USer INTEIfACE .........o.uiiiiiii e 17
2.1.1. Control Panel Main WINAOW ..........cooouiiiiiiiiiiiee e e e 17
2.1.2. Main Menu and TOOIDAI ... e 18
2.2, Control Panel INSTrUMENTS .......uuiiiiiii e e e s 19
2.2.1. "12C Configuration" Dialog WINAOW ............coouuiiiiiiiiiiieiiii e e e 19
2.2.2. "SPI Bus Configuration" Dialog WIiNOW .............cviiiiiiiiiiiiiiiieeiie e 20
2.2.3. "12C Bridge DevVICES" Bar ......ccciiiiiiiiiiiii it 20
2.2.4. "2C REAA" BT ...uuiiiiiiiiieeite e 23
2.2.5. "2 WIIE" B ...eiiiiiiiitii ettt 24
2.2.6. "2C LOW LEVEI" Bar ...ttt 25
2.2.7. "12C BUS LEVEI" B ..ouuiiiiiiiieieii e 27
2.2.8. "SPI BUS" Bar ..o 28
T N B To ol B[ o= o =1 (o] o PPN 29
3.1. U2C-12 device initialization roUtiNES ..........ccooiiiiiiiiiiiie e 29
3.1.1. U2C_GetDEVICECOUNT() - eeeerieeeiiiiieee e e ettt e et e et e e e et e e e e et eeeeat s e e e eatnaaaees 29
3.1.2. U2C_GetSerialNUM() ..oeeeeiiee ettt e e e e e e e e eaanns 29
3.1.3. U2C_ISHANAIEVAIIA() .eeevrrriieeeiieeeeitee et e e e e eenees 30
3.1.4. U2C_OPENDEVICE() - eeeeurnieeeiiieeee et e ettt e e e e e et e e e et e e e et e e e e et e e eeaaanens 30
3.1.5. U2C_OpenDeviceBySerialNUMI() .......ccouuuiiiiiiiie e 30
3.1.6. U2C _CIOSEDEVICE() evevvneeieiiieeeiie ettt e e e e et e e et e e e e e e e eaaa s 31
3.1.7. U2C_GetFirmwar@VErsioN() ........euuuieeeeiie et s e et e e et e e et e e e et e e e eaneaeeeenn s 31
3.1.8. U2C_GetDIVEIVEISION() +.ueeeeiiieeieiieee et e ettt e e e et e e e e e e e e et e e e e et e e e e et e e eeeannnns 32
3.1.9. U2C_GEetDIIVEISION() eevunieeiiiie ettt ettt e e e e et e e et e e e e et e e e e eaa s 32
3.2. I°C bus CcoNfigUration TOULINES .......coouuiiiiiiii e 32
K O 1 O ST 1 o] o (=Y o | 32
I U P O €11 {bde] o =Y [ PP 33
3.2.3. U2C_SetClOCKSYNCN() eerinieiiiiiiiee ettt e e e e e e e e ean s 34
3.2.4. U2C_GetCIOCKSYNCN() 1eevuuieieiiiiiet ettt e e et e e et e e e e e s 35
3.2.5. U2C_SetClockSynchTiMEOUL() ...ccvvueeeeiiieeiiii et 35
3.2.6. U2C_GetClockSYNChTIMEOUL() ..euuueiiiiiieeiiiie e 36
3.3. 12C NGN 1EVE] FOULINES ...ttt ee ettt e et ee e 37
KRG Tt B U )2 O -t Lo [ TSP 37
KRG I U 2 O T 41 (=T USSP 38
3.3.3. U2C _SCANDEVICES() +evvuueeeeeinieiiiieeee e e e ettt e e ettt e e e et e e e ettt e e e eat s e eaeatn s eaeeatnaaaeees 39
3.3.4. U2C_RW_PACK() +errrruueeeiteteitiiae ettt ettt e e ettt e e e e e eetbaa e 39
3.4, 12C 1OW [EVE] FOULINES ...ttt et s e ee e s 40
K N B U ) O = o () I PSSP 40
3.4.2. U2C_RepeatedSHart() .. ..eeevunieeeiiiieeiiiii e et e e e eee 41
K I T U ) O (o] o PRSPPI 41
3.4.4. U2C_PUBYEE() oeeeiiiiiiiiiii ettt ettt 41
3.4.5. U2C_GetBYLIE() oeeeeruruiiii ettt ettt 42
3.4.6. U2C_PUIBYIEWItNACK() .oeeeeetiiieeeeei et 42
3.4.7. U2C_GetByteWIthACK() .. eeeeeriiiiee et 43
3.4.8. UZ2C _PULACK() +eruuneeeeeteietitie ettt ettt e ettt e e e e et e e bbb e e e e e aeeees 44
3.4.9. U2C _GEEACK() --ueeetetiittiti ettt e et eeeaaa 44
3.5. 12C WITE 1EVEI TOULNES ......vovoeeeeeeeeeeeeeeeeeee ettt 45
3.5.1. U2C_REAASCI() - eeieieeitiiii ettt e e e et et aeeeeaae 45
= ol
= —olan Copyright © 2009 Diolan 4



W

U2C-12 USB-12C/SPI/GPIO
Interface Adapter Users Manual

3.5.2. U2C_REAASAA() oevvuneiiiiiieieiii ettt 45
3.5.3. U2C_ReEICASESCI() +evvuueieiiiieiiiii ettt 46
3.5.4. U2C_ReICASESAA() +.vvuueeeiiuiiiiii ettt ettt eaaan 46
T U 1 O B o] o 1 o[ PP 47
KRN T O B o] o1 T = PO 47

K G €1 o [ 2 o] 1101 PSP 48
3.6.1. U2C_SetloDir€CtON() ...ceeuunieeiiiiiiet ittt et 48
3.6.2. U2C_GetloDireCtion() ...eeeuieeeeiieieei e 49
KGR T 0 1 O (o) 41 Y T PP 49
KGR U 1 O (o] 2 {-T- To ) TP 50
3.6.5. U2C_SetSingleloDireCioN() .. ..ccevuueieiiiieeiii et 51
3.6.6. U2C_GetSingleloDireCtion() .....ccuuueiieii e 51
3.6.7. U2C_SINGIEIOWIIE() oevvnieiiiii e 52
3.6.8. U2C_SiINgIEIOREAA() .eevvuieieiiieiiii et 53

3.7. SPI bus configuration FOULINES ...........iiiiiiiiiii e 53
3.7.1. U2C_SPISEtCONTIG() +evruueiiiinieiiiii et e e e et e eeeeaa e e 54
3.7.2. U2C_SPIGEICONTIG() +rrnueeeerrnieiiiiiee ettt e et e e et e e e eebn e eeees 54
3.7.3. U2C_SPISEtCONTIGEX() +evuueteeriietiiiie ettt e et e e 55
3.7.4. U2C_SPIGEtCONFIGEX() +vuuerernnietiiiie ettt 56
3.7.5. U2C_SPISEIFTEO() -- eeevrneeeiiiieiiii ettt e 57
O T OS] o1 C Tt (o =T [ PSP 57
3.7.7. U2C_SPICONFIGSS() +ruueeeeerniiiiiiiet ittt e e eaaans 58

3.8. SPI data transfer roUtiNes .........ccoouiiiiiii e 59
3.8.1. U2C_SPIREAAWIILE() ... eeeeenieeiiiii et e eeeees 59
3.8.2. U2C _SPIWIIE() - eeeerneeeiiii ettt ettt e e et e e e e eaanns 60
3.8.3. U2C_SPIREAA() +.ueeeeriniiiiiiii et 61
3.8.4. U2C_SPIRAAWIIESS() ..vuniiieitiieiiiiti et 61
3.8.5. U2C_SPIWIESS() ..ueeeeriieiiiii ettt e e e e e 62
3.8.6. U2C_SPIREAASS() ...uuiiiiiiiiiiiiiii et 63

4. Electrical CharaCteriStiCS ........iiiiiiiiiiiii e et 65

Diolanm

Copyright © 2009 Diolan 5



List of Figures

S

== [Jiolan

4

1.1. "Hardware" tab of the "System Properties” WindOW .............cooiiiiiiiiiiiiii e 9
1.2. The "Driver Signing OptionS" WINAOW ...........uuiiiiiiiiiiiiei e e et e e e eeeeen 10
1.3. The "License Agreement” WINAOW ..........ooouiiiiiii et e e eenes 11
1.4. Choosing the necessary application COMPONENES ............uiiiiiiiiiiiiii e 11
1.5. Choosing folder for Diolan U2C-12 installation ..............coouiiiiiiiii e 12
1.6. Choosing "Start Menu/Programs" folder for the Diolan U2C-12 shortcuts ...........c.cccceevvviieerennnn... 13
1.7. "Found New Hardware Wizard" start WindOW .............coiiiiiiiiii e 14
1.8. "Found New Hardware Wizard" window for choosing searching options .................cccceiviiiinnnnn.n. 14
1.9. The "Hardware installation” window appearance .............ccoooiiiiiii e 15
1.10. The “Found New Hardware Wizard" completing Window .............ooviiiiiiiiiiiii e 16
2.1. The Control Panel main WINAOW ............oouuiiiiiiiiiei e e e e e e e e s 17
2.2. “12C Configuration” dialog WINAOW .........ccouuiiiiiiiiiiiiii et e e e e e e e e s 19
2.3. “Spi Bus Configuration” dialog WINAOW .........ccouuiiiiiiiiiiiei e 20
2.4, "12C Bridge DEVICES" Bl ........iiiiiiiiieeeiiie et e e et e e e et e e e et e e et a e e aaaa 21
2.5. “Open Device” dialog WINAOW ..........uiiiiiiiiii it e e e e et e e et e e e eenn s 21
2.6. “Device NOt TOUNA” MESSAGE ....uiiiiii et e e e e et e e e et e e e e et e e e e eann s 21
2.7. Information about serial number of U2C-12 adapter ...........ccoooiiiiiiiiiiie e 22
2.8. Informatlon about U2C-12 adapter software and firmware version .................cccoceeiiiiiiieiinnnennnn. 22
2.9. The 12C SIave EVICE AUATESSES ....v.veeeeeeeeeeeeee et e e eeeee e eeeeee e e e seeeee et ee et eeeeee e 23
D L 1 O (=Y Lo = - | T 23
2.11. The result of the data reading from the 1C SIAVE AEVICE .o, 24
2.12. The "2C WIE" Bar ..oeeiiiii ettt e e et e e e e e e e nbaa s 24
2.13. The result of data writing into the 2C SIAVE AEVICE ..o, 25
D S I O o Y L = T ST 25
2.15. The START CONAILION ...oeuiiiiiiii e e e e e et e e et e e et eeeeaanaes 25
2.16. The repeated START CONAItION .......oouiiiiiiii e e 26
D A o= TS B O ] o) o 111 o ) o P 26
2.18. The information about the byte data reading with the "Ack" signal ............c.c..ciiiiiiiiiinniinnnnn. 27
2.19. "2C BUS LEVEI" Bar ... 27
2.20. Reading the SDA/SCL lINES ...cccuuiiiieiiiii ettt e et e e e et e e e e e e e e eaa e eeeanen 28
2.27. THE "SPI BUS" DA ...ttt ettt e e e e et et e aeaeeae 28

Copyright © 2009 Diolan 6



Introduction

USB-12C/SPI/GPIO Interface Adapter - U2C-12 is a USB to 1’c master, SPI and GPIO controller. U2C-12
adapter is assigned to access your hardware from PC using 12C, SPI interfaces and GPIO.

I2C Bridge is the program package for working with U2C-12 adapter in Windows OS. 12C Bridge includes
the drivers for U2C-12 adapter and the software to operate it. 12C Bridge also includes the libraries, the
source files, the documentation and the demo applications.

W

= Diolan Copyright © 2009 Diolan 7



Chapter 1. 12C Bridge Software and U2C-12
Hardware Drivers Installation

1.1. System Requirements

To run 12C Bridge software and U2C-12 adapter on your PC you should have:
* MS Windows 98/2000/NT/XP, Linux, FreeBSD, NetBSD, OpenBSD, Darwin, MacOS;
* Atleast 256 Mb of RAM;

* Available USB port.

Caution
Some of the U2C Bridge applications work only in Windows OS.

1.2. Software Installation
* Driver Signing Settings

* Installing I12C Bridge

1.2.1. Driver Signing Settings

Before plugging in U2C-12 adapter, the necessary software (12C Bridge) should be installed. Before the
installation, it is recommended to check Windows OS settings:

* Choose "My Computer/Properties";

* In "System Properties" window select the "Hardware" tab (Figure 1.1, “"Hardware" tab of the "System
Properties" window” [9]) and press the "Driver Signing" button;

iy

= [Jjolan

Copyright © 2009 Diolan 8



12C Bridge Software and U2C-12
Hardware Drivers Installation

Figure 1.1. "Hardware" tab of the "System Properties” window

System Properties .

. 2l x|
System Restore I

Automatic L pdates |
General I

Remate
Computer M ame

Hardware Advanced

— Device kManager

% The Device Manager liztz all the hardware devices inztalled

or your computer. Use the Device Manager to change the
properties of any device.

Device Manager

— Dirivers

Cirivver Signing lets vou make zure that installed drivers are
compatible with Windows, \Windows Update letz you et up
haow Windows connects to Windows | pdate for drivers.

| Drriveer Signing I "Windows pdate

— Hardware Profiles

Hardware profiles provide a way for you to zet up and store
different hardware configurations.

Hardware Profiles |

k. | Cancel | Spply |

* In the "Driver Signing Options" dialog window (Figure 1.2, “The "Driver Signing Options" window(10])
select "Ignore" or "Warn". In case you choose "Block" hardware drivers installation will be blocked by
Windows OS.

iy

—= [Jjolan

Copyright © 2009 Diolan



12C Bridge Software and U2C-12
Hardware Drivers Installation

Figure 1.2. The "Driver Signing Options" window

Driver Signing Options 7] x|

Curing hardware installation, MWindows might detect software that
has not passed Windows Logao kesking ta verify ks compatibility. wikh
Windows, (Tell me why this kesking is imporkank

—What action do wou want Windows to take?

™ Ignore - Install the software amyway and don't ask for my
approval

% \Wiarn - Prompkt me each time ko choose an ackion

" Block - Mever install unsigned driver software

—administrator option

¥ Make this action the system default

Ik I Cancel

1.2.2. Installing 12C Bridge

To install U2C-12 adapter software:

» Load the latest version of I2C Bridge program package from Diolan website ( http://www.diolan.com/i2c/
u2c12_dwn.html [http://www.diolan.com/i2c/u2c12_dwn.html]);

* Run I12C Bridge.X.X.X.exe file ("X.X.X" is the number of current version);

* Read the license agreement (Figure 1.3, “The "License Agreement" window[11]). In case you agree
with all license conditions press the “| Agree” button. The Setup process will continue;

iy

= [Jjolan

Copyright © 2009 Diolan 10


http://www.diolan.com/i2c/u2c12_dwn.html
http://www.diolan.com/i2c/u2c12_dwn.html
http://www.diolan.com/i2c/u2c12_dwn.html

12C Bridge Software and U2C-12
Hardware Drivers Installation

Figure 1.3. The "License Agreement” window

® Doianuzcizozosep _lEix

License Agreement

Please review the license terms before instaling Diolan U2C-12 0.2.0, ,‘j

Press Page Down to see the rest of the agreement.

" opyright {3 2006 Diolan LTD -

This software is provided 'as-is', without any express or implied warranty, In no event
will the authors be held liable for any damages arising from the use of this software,

Permission is granted ko anyone bo use this software for any purpose, including

commercial applications, and to alter it and redistribute it freely, subject to the Following
restrickions:

1. The origin of this software must nok be misrepresented; wou must not claim that oo
wroke the original software, If wou use this software in a produck, an acknowledament in _ﬂ

If wou accept the terms of the agreement, click I Agree to continue. You musk accept the
agreement to install Diolan U2C-12 0,2.0,

ullsoft Install Svstem 2o

I Agree I Zancel |

* In the next window (Figure 1.4, “Choosing the necessary application componentsT11]) choose
necessary application components and press the "Next" button;

Figure 1.4. Choosing the necessary application components

® Dulnvzc1z0z05ep Sz

Choose Components
Choose which features of Diolan U2C-12 0,20 you want ko install,

¥ o
iy

)

Zheck the components you wank Eo install and uncheck the components you don't want ko
install, Click Mext ko continue,

Select components ko install: e _DES_':_”P':'E""
: Fositiom your moise
[ Bin OVEF A COrMpOnent b
Documentation see its description;
Redistributable Packe
B[] src

-- Drerno

Space required: 2,9MB

1 | >

sl InstalliSwstem w209

« Back I Mext = I Zancel

iy

= [Jjolan

Copyright © 2009 Diolan 11



12C Bridge Software and U2C-12
Hardware Drivers Installation

The list of application components:

Core
U2C-12 device drivers and library installation;

Bin
Compiled and ready to use binary files;

Documentation
U2C-12 Development Kit Documentation;

Redistributable Packet
U2C-12 redistribution packet;

Src
Source code;

Demo
Demo applications.
* In the "Choose Install Location" window (Figure 1.5, “Choosing folder for Diolan U2C-12
installation” [12]) choose the folder in which to install the Diolan USB-I2C/SPI/GPIO Interface Adapter
software. Then press the “Next” button;

Figure 1.5. Choosing folder for Diolan U2C-12 installation

8 Duln vzc1z0z05emp i

Choose Install Location —
Choose the Folder in which to install Diolan U2C-12 0.2,0. i;’

Setup will install Diolan U2C-12 0.2.0 in the following folder, Toinstall in-a different Folder,
click Browse and select another Folder, Click Mext to continue.

Destination Folder

Erowse, .. |

Space required: 2,9MB
Space available: 2, 7GE

Hullsaff InstalliSwstem w209

< Back. I Mext = I Cancel

* In the "Choose Start Menu Folder" window (Figure 1.6, “Choosing "Start Menu/Programs" folder for
the Diolan U2C-12 shortcuts”[13]) choose the "Start Menu" folder for the Diolan U2C-12 software
shortcuts. If you select the “Do not create shortcuts” check-box, the shortcuts for installed applications
will not be created. Press “Install” button and wait until the installation is completed;

iy

= [Jjolan

Copyright © 2009 Diolan 12



12C Bridge Software and U2C-12
Hardware Drivers Installation

Figure 1.6. Choosing "Start Menu/Programs"” folder for the Diolan U2C-12
shortcuts

i

Chooze Start Menu Folder -

Choose a Start Menu Folder Far the Diolan U2C-12 0,20 shorkouts, (,‘j

Select the Stark Menu Folder in which vou would like bo create the program's shorteuts, You
can alsoenker a name ko create a new Folder,

Diolan U2C-12

Accessaries
Bdminiskrative Tools
Games

Skartup

[ Donok create shorkouts
rullsart Install Sstem e 0e

< Back. I Install I Cancel

» After installation is completed press the “Close” button.

1.3. Hardware Drivers Installation

Connect U2C-12 adapter to PC with USB cable. After connection of U2C-12 adapter the “Found New
Hardware Wizard” is started:

» Select the "No, not this time" item in the "Found New Hardware Wizard" window (Figure 1.7, “'"Found
New Hardware Wizard" start window” [14]) and press the "Next" button;

iy

—= [Jjolan

Copyright © 2009 Diolan 13



12C Bridge Software and U2C-12
Hardware Drivers Installation

Figure 1.7. "Found New Hardware Wizard" start window

Found New Hardware Wizard

Welcome to the Found New

Ny -
‘? Hardware Wizard

Windows will search for curent and updated software by
looking on vour computer, on the hardware inztallation CO, or an
the *indows Update "web site [with your permiszion).

Fiead our privacy policy

Can Windows connect to Windows Update to search for
sofbware?

™ Yes, thiz time only

" “Yes, now and evemw time | connect a device
& Mo, nat thiz time

Click Mest to continue.

< Biack I MHest = I Cancel

* In next window (Figure 1.8, “"Found New Hardware Wizard" window for choosing searching
options” [14]) choose the "Install the software automatically” item and press the “Next” button;

Figure 1.8. "Found New Hardware Wizard" window for choosing searching
options

Found New Hardware Wizard

5

Thiz wizard helps you install software for;

J2C12 USB-IZC/SPI/GRIO Interface Adapter

\}l If your hardware came with an installation CD
== or floppy disk, insert it now.

What do you want the wizard o do?

% |nstall the software automatically [Fecommended)
™ Install from a list or specific location [Advanced

Click Mest to continue.

¢ Back I M et = I Cancel

Diolanm

W

Copyright © 2009 Diolan 14



12C Bridge Software and U2C-12
Hardware Drivers Installation

* In case of the "Hardware installation" window appearance (Figure 1.9, “The "Hardware installation”
window appearance” [15]) press the "Continue Anyway" button;

Figure 1.9. The "Hardware installation"” window appearance

Found New Hardmare Wizard

Please wait while the wizard installs the software___

Hardware Installation
% L2
L] E The =oftvare you are installing for thiz hardisare:

12012 USB-12C/5PIAGRI0 Interface Adapter

haz not pazzed Windows Logo testing to werfy its compatibility
with "Windows XP. [Tell me why thiz testing iz important. ]

Continuing your installation of thiz software may impair
or destabilize the correct operation of your spstem
either immediately or in the future. Microzoft strongly
recommends that you stop this installation now and
contact the hardware vendor for zoftware that has
passed Windows Logo testing.

Continue Anypway || STOR Installation I

» After the installation is completed, press the “Finish” button (Figure 1.10, “The “Found New Hardware
Wizard" completing window” [16]).

iy

= [Jjolan

Copyright © 2009 Diolan 15



W

Diolanm

12C Bridge Software and U2C-12
Hardware Drivers Installation

Figure 1.10. The “Found New Hardware Wizard” completing window

Found Mew Hardware Wizard

Completing the Found New

N

Hardware Wizard
The wizard has finizhed installing the software for:

% 2012 USB-2CASPIAGRID Interface Adapter

Click Finizh to cloze the wizard,

¢ Black | Finizh I Earce!

Copyright © 2009 Diolan

16



Chapter 2. Control Panel Application

Control Panel application is distributed with open source code. Its source code is included in
I2C Bridge.X.X.X.exe [http://www.diolan.com/i2c/u2c12_dwn.html] installation package. You can also
browse the recent source code online at "Control Panel Source Code" [http://www.diolan.com/i2¢/src/
control_panel/files.html].

2.1. Control Panel User Interface

¢ Main Window

¢ Main Menu and Toolbar

2.1.1. Control Panel Main Window

To launch the application open "Start Menu\Programs\Diolan U2C-12" or "C:\Program Files\Diolan
\U2C-12\bin" and run the Control Panel.

When the Control Panel is started, the application main window will appear (Figure 2.1, “The Control Panel
main window” [17]).

Figure 2.1. The Control Panel main window

4 Untitled - ControlPanel
®\—»Ein Edt View Options Help
@~eE| |
@x»] OpenDevice| GetSMN | GetVersion | Scani2C Slave |
@»] 12¢Read | Slave address: [ ¥ ] Memory address length [0 +] Memory address: | -] Ler
(5)—| 12cwite | Stave addess: [ +] Memory addess lengthe[0~] Memory address: ~] pa
(6)—»| _stat | Restat| Stop || wike |[T ~] ¥ Ack | Read| & Ack [ack =] | Getac

@ Release SCL| DiopSCL| ReadSCL|| ReleasesDA| DiopSDA | ReadSDA|
| speadwrite |  Spiwrke |  SpiRead | Length: [0 Data: |

=101 x|

(10r—»Ready e

The application main window contains the following elements (enumeration of elements in the list agrees
with enumeration on (Figure 2.1, “The Control Panel main window” [171]):

1. Main menu;

2. Standard toolbar;

Copyright © 2009 Diolan 17


http://www.diolan.com/i2c/u2c12_dwn.html
http://www.diolan.com/i2c/u2c12_dwn.html
http://www.diolan.com/i2c/src/control_panel/files.html
http://www.diolan.com/i2c/src/control_panel/files.html
http://www.diolan.com/i2c/src/control_panel/files.html

Control Panel Application

3. "I2C Bridge Devices" bar;

4. "12C Read" Bar, it is used to read the data from 1°C slave device;

5. "|2C Write" Bar, it is used to write the data to I°C slave device;

6. "12C Low Level" Bar, it is used to work with I°C slave device on low level;
7. "12C Bus Level" Bar, it is used to work withI°C slave device on wire level;
8. "SPI Bus" Bar, it is used to read/write into SPI slave device;

9. Log field;

10Status line.

2.1.2. Main Menu and Toolbar

Control Panel main menu consists of following items:

The "File"” menu item:
Exit - Close the application.

The "Edit" menu item:
Clear Log - Clear log field.

The "View" menu item:
Exit - Close the application.

The "View" menu item:
Standard Toolbar - Show/hide Standard toolbar;

Status Bar - Show/hide Status Bar;

12C Bridge Devices Bar - Show/hide 12C Bridge Devices Bar;
12C Read Bar - Show/hide 12C Read Bar;

12C Write Bar - Show/hide 12C Write Bar;

12C Read Bar - Show/hide 12C Read Bar;

12C Low Level Bar - Show/hide 12C Low Level Bar;

12C Bus Level Bar - Show/hide 12c Bus Level Bar;

SPI Bus Bar - Show/hide SPI Bus Bar.

The "Options" menu item:
Auto Scroll - Turn on/off auto scroll mode for new logs in log the field;

12C Configuration - Show dialog window for changing 12C bus working mode parameters;

Spi Configuration - Show dialog window for changing SPI bus working mode parameters.

The "Help" menu item:
About Control Panel... - Show "About" dialog window.

Standard Toolbar contains following buttons:

=0
The "Auto Scroll" button is intended for turning on/off auto scroll mode for new logs in log field;

Diolanm

W

Copyright © 2009 Diolan

18



Control Panel Application

&

The "Clear" button is intended for clearing the Log Field.

2.2. Control Panel Instruments

I2C Configuration Dialog Window

» SPI Bus Configuration Dialog Window
» 12C Bridge Devices Bar

* "I2C Read" Bar

* "|2C Write" Bar

* "I2C Low Level" Bar

* "I2C Bus Level" Bar

e "|2C Bus Level" Bar

2.2.1. "12C Configuration™ Dialog Window

In the “I2C Configuration” dialog window (Figure 2.2, ““I2C Configuration” dialog window’[19]) you can
change the settings of the 12C bus. To open this dialog window select "Options/I2C Configuration".

Figure 2.2. “I2C Configuration” dialog window

x

12 bus |sTANDARDMODE =]

IV Clock Synchronizatior:
Clock Synchronization Timeout: |255EI

0k, I Cancel | Apply

In the "I12C bus" drop list you can choose the frequency of the 12C bus. It can have one of the following
values:

1. Fast mode (400 kHz);
2. Standard mode (100 kHz);
3. Any value in the range 2 kHz — 83 kHz.

Select the “Clock Synchronization” check-box to turn on the clock synchronization (Clock Stretching). This
option is only available for the frequencies below or equal to "Standard-mode" (<=100 kHz). In "Fast-mode"
this option is unavailable.

The “Clock Synchronization Timeout” field allows to change the clock stretching timeout value (integer
number from 1 to 65535). Clock synchronization (clock stretching) timeout value specified as multiple of
100 microseconds.

iy

= [Jjolan

Copyright © 2009 Diolan 19



Control Panel Application

2.2.2. "SPI Bus Configuration™ Dialog Window

In the “SPI Bus Configuration” dialog window (Figure 2.3, ““Spi Bus Configuration” dialog window(20])
you can change the settings of the SPI bus. To open this dialog window select "Options/Spi Configuration”.

Figure 2.3. “Spi Bus Configuration” dialog window

X

Frequency: I'IEIEI kHz j

CPOL: & g 1 [T Slave Select

CPHA: & D 1 55 Fir: IF'.-'E«EI "I

[ &ctive High

ak. Cancel | Spply |

In the "Frequency" drop list you can choose the clock frequency of the SPI bus. The frequency should
be less than or equal to the maximum frequency the SPI slave device supports. It can have value up to
200 kHz.

In addition to setting the clock frequency, the SPI master device must also configure the clock polarity
("CPOL") and clock phase ("CPHA"™).

Clock phase and polarity should be identical for the SPI master device and the communicating SPI slave
device. In some cases, the phase and polarity are changed between transmissions to allow a SPI master
device to communicate with peripheral SPI slaves having different requirements.

The CPOL clock polarity control bit specifies an active high or low clock. The CPHA clock phase control
bit selects one of two fundamentally different transmission formats:

* CPHA=0. The first edge on the SCK line is used to clock the first data bit of slave into the SPI master
and the first data bit of SPI master into the SPI slave. In some peripherals, the first bit of the slave's
data is available at the slave data out pin as soon as the slave is selected. In this format, the first SCK
edge is not issued until a half cycle into the 8-cycle transfer operation. The first edge of SCK is delayed
a half cycle by clearing the CPHA bit.

» CPHA=1. Some peripherals require the first SCK edge before the first data bit becomes available at the
data out pin; the second edge clocks data into the system. In this format, the first SCK edge is issued
by setting the CPHA bit at the beginning of the 8-cycle transfer operation.

Select the "Slave Select" check-box if the connected SPI slave device supports the SPI slave selection.
The "SS Pin" drop list allows to choose the slave select pin of U2C-12 adapter to which SPI slave device
is connected. The SPI master device must select only one SPI slave device at a time.

The "Active High" check-box allows to determine the active state of the Slave Select signal (state during
the SPI transfer). When the slave select line is active, the SPI master device can operate with the SPI
slave device. If the "Active high" check-box is not checked - Slave Select pin value will be changed from
logical "1" to logical "0" before SPI transaction and returned back to logical "1" after the data is transmitted.
If the "Active high" check-box is checked - Slave Select pin value will be changed from logical "0" to logical
"1" before SPI transaction and returned back to logical "0" after the data is transmitted. You can use this
mode while working with the Microwire bus.

2.2.3. "12C Bridge Devices" Bar

W

The "I2C Bridge Devices" Bar (Figure 2.4, “"12C Bridge Devices" Bar’[21]) includes the following
buttons:

Diolanm

Copyright © 2009 Diolan 20



Control Panel Application

Figure 2.4. "I12C Bridge Devices" Bar

Open Devicel et 5/M I G et Werzion I Scan l2C Slave

* “Open Device” button

Click to choose one of the U2C-12 adapters connected to the PC. If only one U2C-12 adapter is
connected, it becomes selected automatically. If several U2C-12 adapters are connected to the same
PC, the “Device Open” dialog window will appear (Figure 2.5, ““Open Device” dialog window’[21]).
You can use the device serial number to open the specific adapter.

Figure 2.5. “Open Device” dialog window

x

Select the | 2CEridge device :

[Device 1 - 5/N: 44201

k. I Cancel

If there are no connected U2C-12 adapters, the “Device not found” message (Figure 2.6, ““Device not
found” message” [21]) will be displayed.

Figure 2.6. “Device not found” message
x|

Mo Diolan UZC-12 devices detected,
I Please check that U2C-12 device is connecked to USE
port and it's driver is propetly installed,

For complete information abouk U2C-12 device wvisit
IJZC-12 product page at:

hibkp s i, diolan, comy/izciuzc 12, html

Ilse "Open Device" butkan ba kry again,

When Control Panel application is started it opens the device. The “Open Device” button can be used
by user for switching to the new adapter after it was connected.

« “Get S/N” button

Each of the U2C-12 adapters has the unique serial number. To view the serial number of your U2C-12
adapter you can use the “Get S/N” button. The U2C-12 adapter serial number is displayed in log field
(Figure 2.7, “Information about serial number of U2C-12 adapter” [22]).

iy

= [Jjolan

Copyright © 2009 Diolan 21



= |
=— DOiolan

Control Panel Application

Figure 2.7. Information about serial number of U2C-12 adapter

& Untitled - ControlPanel § =10 x|
Fe Edt Wew Options Help

B E

| OpenDevice| [ GetSN | Getversion | Scenl2c Slave |

| 12cRead | Slave sddhess: [ =] Memcey addhecs lengttc [0 ] Memory address: [ =] Length:|0 |

| 1zewite | Slave addriess: | ] Memosy address lengttc [0 ¥] Memory address: [ =] paa| -

| _stat | Restart| Stop || wits |[T =] I ack | Read | & ack: [ack =] | Getack|| Putsck|[ack =] |

| Release SCL| DiopSCL| Hend'ill” Release SDA| urmsm| Hmsmﬂ

U2C_GetSerialdum succeeded
Serial number - 45646

Ready |

* “Get Version” button

The “Get Version” button displays U2C-12 adapter software version in the log field. (Figure 2.8,
“Information about U2C-12 adapter software and firmware version” [22]).

Figure 2.8. Information about U2C-12 adapter software and firmware version

& Untitled - ControlPanel : ;Elﬂ

File Edit View Options Help

B &
OpenDevice|  GetS/N_| [[GaiVarsion]] Scan2C Slave |

|2cRead | Slave addiess: |+ | Memory addiess lengthi [0 ¥ ] Memory address: | | Lengitefo |

J
|
| _I2cwiie | Slave address: [ =] Memary address lengttc [0 _¥] Memory address: | =] pata
J
J
|

Stat | ReStat| Stop || ke | [ Ipm | Read | P ack: [fack =] | Getack]| Puack|[ack =] |
Fislease SCL| DiopSCL| ReadSCL| Release DA umsm!jmsu{uﬂ

SpifteadWirite spiirke | SpRead | Length: [0 Daka: | j|
011 version - (@, 9}

Driver version - (2, %)
Firmware version - (4, 21)

Ready w4

¢ “Scan I2C Slave” button

The “Scan 12C Slave” button scans the 1°C slave device addresses currently occupied by the | 2C slave
devices which are connected to the U2C-12 adapter. The I°C slave device addresses are displayed in
the log field in hexadecimal format (Figure 2.9, “The I°C slave device addresses’ [23]). They are also

added to “Slave address” drop list of “I2C Write” and “I2C Read” bars. U2C-12 adapter supports 7-bit
addressing format.

Copyright © 2009 Diolan 22



Control Panel Application

Figure 2.9. The I°C slave device addresses

& Untitled - ControlPanel E =10 x|

File Edit View Options Help

19

| OpenDevies|  GetSM | GetVession | [Seanizt Save]

| 12cRead | Slave address: [ =] Memosy addvess length fu—::] Memory address: | =] Lengi [0 |
| I2c\write: |5Ia-.-uaddfe=s:m Memony addess henglhcm Memory address: | J Dala.|

|| _Stat | Restat| Swop || wite || =] P oack | Fesd| P Ack [ack 7] | cetack| | Putack| [ac |
] Release SCL| Diop SCL| ReadSCL || Release SDA| nmpsnﬂ nmsnn”

| spiresdwike |  spiwrte | spiResd | Length: [0 Data: | ]|
UEE_EEEHBEUiEGS succeeded

Addresses of the I2C slave devices:
L2 5%

fisecy [ [

2.2.4. "12C Read" Bar

“I2C Read” Bar (Figure 2.10, ““12C Read” Bar” [23]) is used to read data from I°C slave device.

Figure 2.10. “I12C Read” Bar

3| Slave addess: |55 _ﬂ kemarny a-ddre&:len;#l:IE _ﬂ Mermon address: IU _:] Lemth:lll:l |

Each I°C slave device has its own 7-bit address. Enter it in the “Slave address” field. The 1°C slave device
address is an mteger hexadecimal number in the range from 0 to 7F. Click the “Scan 12C Slave” button
(Flgure 2.9, “The | 2C slave device addresses’ 123]) to get the list of addresses currently occupied by
1°C slave devices.

Some I°C slave devices (e.g. 12C EEPROMSs) have their own internal addressing. If your I°C slave device
supports internal addressing, you can enter the internal address in the "Memory address" field and the
address length (in bytes) in the “Memory address length” field. If your | 2C slave device doesn’t support the
mternal addressing, enter “0” in the “Memory address length” field. Memory address length depends on
the I1°C slave device type. If the memory address length value is incorrect, you will get the wrong data.

Possible memory address values for the particular memory address length are listed in table.

Memory address length value Memory address values range
1 0-FF

2 0-FFFFFF

4 0-FFFFFFFF

Enter the number of bytes to be read from the I°C slave device into the “Length” field (integer decimal
value from 1 to 256).

After you have entered the correct values, press the “I2c Read” button to read the data from the Ko sIave
device. You can see the result in the log field (Figure 2.11, “The result of the data reading from the | 2c
slave device” [24]).

Diolan

Q'l'nh

Copyright © 2009 Diolan 23



2.2.5.

Q'l'nh

Control Panel Application

Figure 2.11. The result of the data reading from the I°C slave device

4 Untitled - ControlPanel B =10 x|

File Edt Wew Options Help

2 |
meD | GetSM | GetVession | [ScanizC Siave]|

|[12cRead | Slave addiess: [55 =] Memory address length:[2 =] Mamery address: [0 | Length:[5 |
I20wite | Slave address: m Mermory addess Imglh*m Memory address: | =l Dat-t|

| _stan | Restan| stop || wite | [~ ¥] @ ack | Read | @ ack: [pok =] | Getack|| Pusck] R |

| Release SCL| DiopSCL| ReadSCL|| Release SDA| DiopSDA| ReadSDA||
spReadwrite |  spwrte | spiresd | tength: [0 Data: | =]

=)
U2C_Read succeeded

flave device address - Bx55
Hemory address length - 2
Hemory address - Bx@
Length - &
Data:

16 05 AR AR 22

) i

Ready [ |

"12C Write" Bar

The “I12C Write” Bar (Figure 2.12, “The "I2C Write" Bar’[24]) is used to send data into the 1°C slave
device.

Figure 2.12. The "I12C Write" Bar

| _12cWie | Slave adress: [ ] Memory address lengttc [0 ] Memory address _ | pata] |

Each I°C slave device has its own 7-bit address. Enter it in the “Slave address” field. The 1°C slave device
address is an mteger hexadecimal number in the range from 0 to 7F. Click the “Scan 12C Slave” button
(Flgure 2.9, “The | 2C slave device addresses’ 123]) to get the list of addresses currently occupied by
the I°C slave devices.

Some I°C slave devices (e.qg. 1’c EEPROMSs) have their own internal addressing. If your 1°C slave device
supports internal addressing, you can enter the internal address in the "Memory address" field and the
address length (in bytes) in the “Memory address length” field. If your | 2C slave device doesn't support the
|nternal addressing, enter “0” in the “Memory address length” field. Memory address length depends on
the I°C slave device type. If the memory address length value is incorrect, you will get the wrong data.

The possible memory address values for the particular memory address length are listed in table.

Memory address length value Memory address values range
1 0-FF

2 0-FFFFFF

4 0-FFFFFFFF

In the “Data” field you can enter the data to be sent to the I°C slave device. You can type hexadecimal
values (from 0 to FF) to the field. To enter more then one value separate them by space.

After you have entered the correct values press the “I2c Write” button to send the data to the 1 C slave
device. You can see the result in the log field Figure 2.13, “The result of data writing into the | 2C slave
device” [25].

Dioclan Copyright © 2009 Diolan 24



Control Panel Application

Figure 2.13. The result of data writing into the I°C slave device

=
File Edt View Options Help

| =0

| meDml GetSM | Getversion | [ScaniaC Slave]

1 2cResd | Slave addiess: [ v] Mamoy address lengit[0 ] Memory address: =] Lengtix[0 ;
.- adivess: [55_v] Memoey address lengthi[2_+] Memory addeess: 0 =] DaafiESAarR 22 =

| _Start | ReStat| Stop || wiie |[ =] @ Ack | Resd | ack [k ]| Getack | Pusack|[ack =] |
lnmsu] Drop SCL| Flesd SCL || Relesse SDA| DropSDA| ResdsDa||
|_soRoadwrte | _ spwrke | _ SpRead | Length: [0 Data: | =i
U2¢_Write succeeded -

Slave dewice address - Bx55

Hemory address length - 2

Hemory address - Bx@

Length - &

Data:

16 85 AA A8 22

Ready w4

2.2.6. "12C Low Level" Bar

The “I12C Low Level” bar (Figure 2.14, “'I2C Low Level" Bar’[25]) allows to work with the I°C slave
devices on the low level.

Figure 2.14. "I12C Low Level” Bar

Stat | ReStat| Stop || Wike | [T =] ¥ ack | Read | @ ack [Ack =] | Getack|| Puack|[ack =]

The “Start” button generates the START condition on the 1’c bus, i.e. a HIGH to LOW transition of the
SDA line while the SCL line is HIGH. The START condition (Figure 2.15, “The START condition”[25])
indicates the beginning of the data exchange operation.

Figure 2.15. The START condition

START
COMDITION

The “ReStart” button generates the repeated START condition (Figure 2.16, “The repeated START

condition” [26]). It is used to allow combined write/read operations without releasing the bus and
interrupting the operation.

= Diolan Copyright ® 2009 Diolan 25



Control Panel Application

Figure 2.16. The repeated START condition
r ]

/ | |
— — —
sDA | |
L
—- L -
SCL START
CONDITION

The “Stop” button generates the STOP condition (Figure 2.17, “The STOP condition”[26]) on the 1’c
bus, i.e. a HIGH to LOW transition of the SDA line while the SCL line is HIGH. The bus is considered to
be free after the STOP condition.

Figure 2.17. The STOP condition
[+ =
o _“'u | / | SDP._
ST | |
/ : | SCL

—_—d

STOP
COMDITION

The “Write” button transmits the data byte from I°C master to 1°C slave device. Enter the transmitted value
into the “Write” field (integer hexadecimal value from 0 to FF).

If the "Ack" (Write) check-box is selected, acknowledge will be requested from the I°C slave device after
the data byte transmission.

If the "Ack" (Write) check-box is not selected, acknowledge will not be requested. It may lead to the data
loss. You can still press the "Get Ack" button to request acknowledge.

The “Read” button transmits the data byte from I°C slave to I°C master device. The information about
the byte data requested is desplayed in the log field (Figure 2.18, “The information about the byte data
reading with the "Ack" signal” [27]).

W

= Diolan Copyright © 2009 Diolan 26



Control Panel Application

Figure 2.18. The information about the byte data reading with the "Ack” signal

& Untitled - ControlPanel i =10i ]

File Edt ‘iew Options Help
B B

OpenDevics|  GetSM | _GetVersion | [Scan 12€ Slave]|
12cRead | Slave addiess: I Memony addess lengthc | 0 j Memiory addiass: [ EI Lengti [D !
I 2ehiite Iﬁlmadwrs-s IHamw address lengthc |0 ¥ | Memory address: | [ j Dala.'| _"_'I_

] | stat | Restan] Stop | _wite [[28 =] @ ack | [Resd] @ ack: [ack =] | Getack|| Puack|[ac <]

_ Release SCL| DiopSCL| ResdSCL || Relsase 504| Dropsa Read SDA||

spreadwrite |  spiwrte | SpiResd | Length: [0 Data: | =]
R
P2C_GetByteWithAck succeeded
Data: 33
=
Ready [

If the "Ack" (read) check-box is selected, acknowledge ("Ack" or "No Ack" depends on the value of “Put
Ack” drop list) will be generated.

If "Ack" (read) check-box is not selected, acknowledge will not be generated. You can still press the “Put
Ack” button to generate acknowledge. Without acknowledge the further data reading can be incorrect.

The “Get Ack” button requests acknowledge from the 1C slave device.

The “Put Ack” button generates acknowledge on the 1°C bus ("Ack” or “No Ack” depends on the value
of “Put Ack” drop list).

2.2.7. "12C Bus Level" Bar

The "I12C Bus Level” Bar (Figure 2.19, “"I2C Bus Level" Bar’[27]) allows to work with the 1°C slave
devices on the bus level (SDA and SCL lines). The bar buttons make it possible to read and write the data
by controlling the bus lines.

Figure 2.19. "12C Bus Level” Bar

Fieleasz SCL| Diop SCL| ReadSCL| | Release SDA| Drop SDA | Read SDA|

The "Release SCL" button releases the SCL line of the 1°C bus. If the SCL line is not pulled down by
1°C slave device, it will get high.

The "Drop SCL" pulls down the 12C bus SCL line.
The "Read SCL" button checks the current state of the 1°C bus SCL line.

The "Release SDA" button releases the SDA line of the I°C bus. If the line is not pulled down by 1°C slave
device, it will get high.

The "Drop SDA" button pulls down the I°C bus SDA line.
The "Read SDA" button checks the current state of the I°C bus SDA line.

For instance, by consiquent pressing the "Read SCL" and "Read SDA™ buttons (on condition that the K
bus is released) the messages informing that the both lines are released will be displayed in the log field
(Figure 2.20, “Reading the SDA/SCL lines” [28]).

Diolan

Q'l'nh

Copyright © 2009 Diolan 27



Control Panel Application

Figure 2.20. Reading the SDA/SCL lines

¢ Untitled - ControlPanel 5 ‘Jg'ﬂ
File Edit View Options Help

[l |

| OpenDevice|  GetSM | GelVersion | Scani2C Slave |

] ead | Slave address: _:__lummmm@ummm — ]tengnf0 |

| 12cwie | Slave address: [ *] Memeey address lengthc [0 ~] Memary address [ =] Dota =l
| _stat | Restat| swop || wite [[T =] 7 ack | Pesd | @ ack [ack =] | Getack|| Puack|[ec =] |

| Release SCL| DiopSCL| ReadSCL|| Release SDA| Drop SDA | [Read 5DA]

| spreadwrite | spiwrite |  spResd | iength: [0 Data: | <]

U2C_Readicl succeeded
Current SCL state - LS_RELEASED

U2C_ReadSda succeeded
Current SDA state - L5_RELEASED

Ready I T
2.2.8. "SPI Bus" Bar

The "SPI Bus Level" Bar (Figure 2.21, “The "SPI Bus" bar”[28]) allows to read and write the data over
the SPI bus.

Figure 2.21. The "SPI Bus" bar

spReadwrite |  spiwrite |  SpRead | Length: [0 Data: | =l

The "Spi ReadWrite" button shifts out (writes) and in (reads) a stream of up to 256 bytes to/from the SPI
slave device. The shift operation is occurred in a full duplex data transmission mode.

The "Spi Write" button shifts out (writes) a stream of up to 256 bytes to the SPI slave device.
The "Spi Read" button shifts in (reads) a stream of up to 256 bytes from the SPI slave device.
The "Length™" field allows you to enter the number of bytes to be shifted. Maximum value is 256.

The "Data" field allows you to enter the data to be shifted. You can type hexadecimal values (from O to
FF) to the field. To enter more then one value separate them by space.

2 Diclan
- Copyright © 2009 Diolan 28



Chapter 3. APl Documentation

3.1. U2C-12 device initialization routines

* U2C_GetDeviceCount()

* U2C_GetSerialNum()

» U2C_lIsHandleValid()

* U2C_OpenDevice()

» U2C_OpenDeviceBySerialNum()
* U2C_CloseDevice()

* U2C_GetFirmwareVersion()

» U2C_GetDriverVersion()

+ U2C_GetDlIVersion()

3.1.1. U2C_GetDeviceCount()

BYTE U2C Cet Devi ceCount () ;

The U2C_Get Devi ceCount () function checks how many U2C-12 devices are currently attached.

Returns:

The function returns the number of the U2C-12 devices detected on current computer.

3.1.2. U2C_GetSerialNum()

U2C _RESULT U2C_GCet Seri al Nunf
HANDLE hDevi ce,
| ong* pSerial Num

The U2C_Get Seri al Nun{() function retrieves the Serial Number of the current device. This is unique
Serial Number. It can be used to identify device when you are using a number of U2C-12 devices
simultaneously.

Parameters:

hDevice
Handle to the U2C-12 device to retrieve the Serial Number from. The device has to be opened first,
using U2C_OpenDevice() or U2C_OpenDeviceBySerialNum() function.

pSerialNum
Pointer to a long integer variable to be filled with the device Serial Number.

Return values:
U2C_SUCCESS

= [Jjolan

W

Copyright © 2009 Diolan 29



API Documentation

Serial Number was successfully obtained.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.1.3. U2C_IsHandleValid()

U2C RESULT U2C | sHandl eVal i d(
HANDLE hDevi ce

)

The U2C_I sHandl eVal i d() function checks whether the device referenced by hDevi ce handle is
currently attached to the USB and can be used by SW.

Parameters:

hDevice
Handle to the U2C-12 device that will be checked.

Return values:

U2C_SUCCESS

The device referenced by hDevi ce handle is present.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.1.4. U2C_OpenDevice()

HANDLE U2C QpenDevi ce(
BYTE nDevi ce

)5
The U2C_OpenDevi ce() function opens the U2C-12 device.

Parameters:

nDevice
The device number to open.

Returns:

If function succeeds, the return value is a valid handle to the specified device. If function fails, the
return value is | NVALI D_HANDLE VALUE. This can happen if the specified device is not present.

3.1.5. U2C_OpenDeviceBySerialNum()

HANDLE U2C_OpenDevi ceBySeri al Nun{
 ong nSeri al Num

)

The U2C_OpenDevi ceBySeri al Num() function opens the U2C-12 device with specified Serial Number.
This is unique Serial Number. It can be used to identify device when you are using a number of U2C-12
devices simultaneously.

Diolanm

W

Copyright © 2009 Diolan 30



API Documentation

Parameters:

nSerialNum
The Serial Number of the device to open.

Returns:

If function succeeds, the return value is a valid handle to the specified device. If function fails, the
return value is | NVALI D_HANDLE_VALUE. This can happen if the device with specified Serial Number
is not present.

3.1.6. U2C_CloseDevice()

U2C RESULT W2C O oseDevi ce(
HANDLE hDevi ce

)

The U2C O oseDevi ce() function closes the open device handle.

Parameters:

hDevice
Handle to the U2C-12 device to close.

Return values:

U2C_SUCCESS

The device referenced by hDevi ce handle was successfully closed.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.1.7. U2C_GetFirmwareVersion()

U2C RESULT W2C Get Fi r mnar eVer si on(
HANDLE hDevi ce,
PU2C VESI ON | NFO pVer si on

i 5
The U2C_Get Fi r mnvar eVer si on() function retrieves the version of the firmware currently loaded into

the U2C-12 device referenced by hDevi ce handle.

Parameters:

hDevice
Handle to the U2C-12 device to obtain firmware version from.

pVersion
Pointer to a U2C_VERSI ON_| NFOstructure to be filled with the firmware version number.

Return values:

U2C_SUCCESS

The firmware version was successfully retrieved.
U2C_HARDWARE_NOT_FOUND

Diolanm

W

Copyright © 2009 Diolan 31



API Documentation

U2C-12 device referenced by hDevi ce handle was not found.

3.1.8. U2C_GetDriverVersion()

U2C RESULT W2C Get Dri ver Ver si on(
HANDLE hDevi ce,
PU2C VESI ON | NFO pVer si on
)5

The U2C _Get Dri ver Ver si on() function retrieves the version of the driver used to communicate with

U2C-12 device.

Parameters:

hDevice
Handle to the U2C-12 device to obtain the version of the driver used to communicate with.

pVersion
Pointer to a U2C_VERSI ON_|I NFOstructure to be filled with the driver version number.

Return values:

U2C_SUCCESS

The driver version was successfully retrieved.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.1.9. U2C_GetDIIVersion()

U2C VERSI ON_I NFO U2C Get DI | Versi on();

The U2C_CGet DI | Ver si on() function retrieves the version of the | 2CBr dg. dI | dynamic link library or
shared library for Linux.

Returns:

U2C _VERSI ON_I NFOstructure containing | 2CBr dg. dl | dynamic link library version number.

3.2. I°C bus configuration routines

» U2C_Setl2cFreq()

* U2C_Getl2cFreq()

» U2C_SetClockSynch()

» U2C_GetClockSynch()

* U2C_SetClockSynchTimeout()

* U2C_GetClockSynchTimeout()

3.2.1. U2C_Setl2cFreq()

= [Jjolan

W

Copyright © 2009 Diolan 32



API Documentation

U2C _RESULT U2C Set | 2cFreq(
HANDLE hDevi ce,
BYTE Frequency

)

The U2C_Set | 2cFreq() function configures 1°C bus frequency.

Parameters:

hDevice
Handle to the U2C-12 device.

Frequency
The frequency of K bus, where:

» 0 corresponds to | 2 C bus fast mode (400 kHz).
* 1 corresponds to | 2 C bus standard mode (100 kHz).

* 1+n corresponds to clock period of | 2Cbus equal to 10 + 2*n uS.
For convenience following constants were introduced:

U2C_I2C_FREQ_FAST 1C bus fast mode (400 kHz)
U2C_I2C_FREQ_STD I°C bus standard mode (100 kHz)
U2C_I2C_FREQ_83KHZ 83 kHz

U2C_I2C_FREQ_71KHZ 71 kHz

U2C_I2C_FREQ_62KHZ 62 kHz

U2C_I2C_FREQ_50KHZ 50 kHz

U2C_I2C_FREQ_25KHZ 25 kHz

U2C_I2C_FREQ_10KHZ 10 kHz

U2C_I2C_FREQ_5KHZ 5 kHz

U2C_I2C_FREQ_2KHZ 2 kHz

Return values:

U2C_SUCCESS

The I°C bus frequency value was successfully set.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.2.2. U2C_Getl2cFreq()

U2C_RESULT U2C_Cet | 2cFr eq(
HANDLE hDevi ce,
BYTE* pFrequency

)

The U2C Get | 2cFreq() function obtains 1°C bus frequency.

Parameters:

hDevice
Handle to the U2C-12 device.

= [Jjolan

W

Copyright © 2009 Diolan

33




API Documentation

pFrequency
A pointer to byte to be filled with current 1°C bus frequency, where:

» 0 corresponds to | 2 C bus fast mode (400 kHz).
* 1 corresponds to | 2 C bus standard mode (100 kHz).

* 1+n corresponds to clock period of | 2C bus equal to 10 + 2*n uS.
For convenience following constants were introduced:

U2C_I2C_FREQ_FAST 1C bus fast mode (400 kHz)
U2C_I2C_FREQ_STD I°C bus standard mode (100 kHz)
U2C_I2C_FREQ_83KHZ 83 kHz

U2C_I2C_FREQ_71KHZ 71 kHz

U2C_I2C_FREQ_62KHZ 62 kHz

U2C_I2C_FREQ_50KHZ 50 kHz

U2C_I2C_FREQ_25KHZ 25 kHz

U2C_I2C_FREQ_10KHZ 10 kHz

U2C_I2C_FREQ_5KHZ 5 kHz

U2C_I2C_FREQ_2KHZ 2 kHz

Return values:

U2C_SUCCESS

The I°C bus frequency value was successfully retrieved.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.2.3. U2C_SetClockSynch()

U2C RESULT U2C Set O ockSynch(
HANDLE hDevi ce,
BOOL Enabl e

)

The U2C_Set d ockSynch() function enables I°C bus clock synchronization.

Clock synchronization (clock stretching) is used in situations where an 1°C slave is not abIe to co- operate
with the clock speed provided by the U2C-12 | 2C master and needs to slow down the 1°C bus 1°C slave
holds down the SCL line low and in this way signals the I 2C master about a wait state. If 1°C bus clock
synchronization is enabled, U2C-12 device will wait until | 2C slave device releases the SCL line.

Warnlng

2 C bus clock synchronization (clock stretchmg) is implemented for | 2C bus frequencies up to 100kHz. See
UZC _Setl2cFreq() to learn how to change | 2Cbus frequency.

Parameters:

hDevice
Handle to the U2C-12 device.

Enable
Clock synchronization (clock stretching) enable/disable value:

Diolanm

W

Copyright © 2009 Diolan 34




API Documentation

* 1 corresponds to | 2 C bus clock synchronization enabled.
* 0 corresponds to | 2 C bus clock synchronization disabled.

Return values:

U2C_SUCCESS

The 1°C bus clock synchronization value was successfully set.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.2.4. U2C_GetClockSynch()

U2C _RESULT U2C _Set O ockSynch(
HANDLE hDevi ce,
BOOL* pEnabl e

i 5

The U2C_Get O ockSynch() function retrieves I°C bus clock synchronization settings.

Clock synchronization (clock stretching) is used in situations where an 1°C slave is not abIe to co- operate
with the clock speed provided by the U2C-12 | 2C master and needs to slow down the 1°C bus 1°C slave
holds down the SCL line low and in this way signals the I 2C master about a wait state. If 1°C bus clock
synchronization is enabled, U2C-12 device will wait until | 2C slave device releases the SCL line.

Warning

2 C bus clock synchronization (clock stretchlng) is implemented for | 2Cbus frequencies up to 100kHz. See
U2C _Setl2cFreq() to learn how to change | 2Cbus frequency.

Parameters:

hDevice
Handle to the U2C-12 device.

pEnable
Clock synchronization (clock stretching) enable/disable value:

* 1 corresponds to | 2 C bus clock synchronization enabled.
* 0 corresponds to | 2 C bus clock synchronization disabled.

Return values:

U2C_SUCCESS

The 1°C bus clock synchronization value was successfully retrieved.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.2.5. U2C_SetClockSynchTimeout()

W

U2C_RESULT U2C_Set O ockSynchTi meout (
HANDLE hDevi ce,
WORD Ti meout

Diolanm

Copyright © 2009 Diolan 35



API Documentation

)

The W2C _Set C ockSynchTi meout () function configures timeout value for I°’C bus clock
synchronization.

Clock synchronization (clock stretching) is used in situations where I°C slave device is not ableto cooperate
on the clock speed provided by the U2C-12 | 2C master and needs to slow down the 1°C bus. I°C slave
holds down the SCL line low and in that way signals the | 2C master about a wait state. To avoid Wa|t|ng
deadlock (if some problem occurs with 1°C slave device) timeout value was introduced into U2C-12 | 2c
interface. If 1°C slave device doesn't release the clock within the given timeout interval, U2C-12 adapter
returns the U2C | 2C_CLOCK_SYNCH_TI MEQUT error value.

The U2C_Set C ockSynchTi nmeout () function doesn't enables or disables clock stretching functionality.
It only changes the clock stretching timeout value. Clock stretching should be enabled with
U2C_SetClockSynch() function.

Warnlng

2 C bus clock synchronization (clock stretchlng) is implemented for | 2 C bus frequencies up to 100kHz. See
UZC _Setl2cFreq() to learn how to change | 2Cbus frequency.

Parameters:

hDevice
Handle to the U2C-12 device.

Timeout
Clock synchronization (clock stretching) timeout value specified as multiple of 100 microseconds.

Return values:
U2C _SUCCESS

The 1°C bus clock synchronization timeout value was successfully set.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.2.6. U2C_GetClockSynchTimeout()

U2C RESULT W2C Get C ockSynchTi meout (
HANDLE hDevi ce,
WORD* pTi neout

)

The U2C_Get T ockSynchTi meout () function retrieves timeout value for I°C bus clock synchronization.

Clock synchronization (clock stretching) is used in situations where I°C slave device is not ableto cooperate
on the clock speed provided by the U2C-12 | 2C master and needs to slow down the I°C bus. I°C slave
holds down the SCL line low and in that way signals the | 2C master about a wait state. To avoid waiting
deadlock (if some problem occurs with 1°C slave device) timeout value was introduced into U2C-12 1°C
interface. If 1°C slave device doesn't release the clock within the given timeout interval, U2C-12 adapter
returns the U2C _| 2C_CLOCK_SYNCH_TI MEQUT error value.

Warnlng

2 C bus clock synchronization (clock stretchmg) is implemented for | 2Cbus frequencies up to 100kHz. See

U2C _Setl2cFreq() to learn how to change | 2Cbus frequency.

W

Diolanm

Copyright © 2009 Diolan 36



API Documentation

Parameters:

hDevice
Handle to the U2C-12 device.

pTimeout
Pointer to variable to be filled with clock synchronization timeout value.

Return values:

U2C_SUCCESS

The 1°C bus clock synchronization timeout value was successfully retrieved.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.3. I°C high level routines

* U2C_Read()
» U2C_Write()
» U2C_ScanDevices()

. U2C_RW._Pack()

3.3.1. U2C_Read()

U2C_RESULT U2C_Read(
HANDLE hDevi ce,
PU2C_TRANSACTI ON pTransacti on

)

The U2C _Read functi on() reads up to 256 bytes from the I°C slave device.

Parameters:

hDevice
Handle to the U2C-12 device.

pTransaction
Pointer to the U2C_TRANSACTI ON structure to be used during the I°C read transaction. Before calling
the function this structure has to be partially filled:

« nSlaveDeviceAddress - must contain the | 2 C slave device address.

* nMemoryAddressLength - must contain the internal address length (in bytes from 0 up to 4). If
nMenor yAddr essLengt h is equal to 0, no address will be sent to device and repeated | 2 ¢ start
condition won't be generated.

* MemoryAddress - must contain the internal | 2 C slave device address.
* nBufferLength - must contain the number of bytes to be read from the | 2 C slave device.
After successful completion of the read operation Buf f er member of the structure will be filled with

data read from I°C slave device.

Return values:

Diolanm

W

Copyright © 2009 Diolan 37



API Documentation

U2C_SUCCESS
The data was successfully read.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_SLAVE_OPENNING_FOR_WRITE_FAILED

I°C slave device did not acknowledge write slave address.
U2C_SLAVE_OPENNING_FOR_READ_FAILED

1°C slave device did not acknowledge read slave address.
U2C_SENDING_MEMORY_ADDRESS_FAILED

1°C slave device did not acknowledge internal address.

3.3.2. U2C_Write()

U2C RESULT U2C Wi t e(

)

HANDLE hDevi ce,
PU2C TRANSACTI ON pTransacti on

The L2C Wit e() function writes up to 256 bytes into the 1°C slave device.

Parameters:

hDevice
Handle to the U2C-12 device.

pTransaction
Pointer to the U2C_TRANSACTI ON structure to be used during the I°C write transaction. Before calling
the function this structure have to be filled:

nSlaveDeviceAddress - must contain the | ? C slave device address.

nMemoryAddressLength - must contain the internal address length (in bytes from O up to 4). If
nMenor yAddr essLengt h is equal to 0, no address will be sent to | 2 ¢ slave device.

MemoryAddress - must contain the internal | 2 C slave device address.
nBufferLength - must contain the number of bytes to be written into the | 2 C slave device.

Buffer - must contain the data to be written into the | > C slave device.

Return values:

U2C_SUCCESS

The data was successfully written into the I°C slave device.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_SLAVE_OPENNING_FOR_WRITE_FAILED

1°C slave device did not acknowledge write slave address.
U2C_SENDING_MEMORY_ADDRESS_FAILED

W

Diolanm

Copyright © 2009 Diolan 38



API Documentation

1°C slave device did not acknowledge internal address.
U2C_SENDING_DATA_ FAILED

1°C slave did not acknowledge data output.

3.3.3. U2C_ScanDevices()

U2C RESULT W2C ScanDevi ces(
HANDLE hDevi ce,
PU2C SLAVE _ADDR LI ST pLi st

The U2C_Scan Dew ces() function scans slave device addresses currently occupied by | 2C slave devices
connected to the I°C bus.

Parameters:

hDevice
Handle to the U2C-12 device.

pList
Pointer to the U2C_SLAVE _ADDR LI ST structure to be filled with slave device addresses. If function
succeed nDevi ceNunmber member contains the number of the valid addresses in Li st array.

Return values:
U2C SUCCESS

Operation was successfully completed and pLi st is filled with valid data.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.3.4. U2C_RW_Pack()

U2C RESULT U2C RW Pack(
HANDLE hDevi ce,
PU2C TRANSACTI ON_PACK pTransacti on,
i nt count

Warning

This function is implemented only for Linux and Mac versions of the library.

The U2C_RW Pack() function executes a list (pack) of I°C read/write transactions. Al transactlons are
sent to U2C-12 device in a single USB transfer block. U2C_RW Pack() waits until aII I°C transactions
are completed and returns each transaction result code in pTransaction([i].rc element. I°C transactions are
performed sequentially in the same order as they are in the pack. Take care to pack correct sequence of
the transactions. For instance attempt to read/write after write to I°C EEPROM may timeout because of
the internal EEPROM write cycle.

Parameters:

hDevice
Handle to the U2C-12 device.

Diolanm

W

Copyright © 2009 Diolan 39



API Documentation

pTransaction
List of I°C transactions.

count
Number of I°C transactions in the pTransacti on list.

Return values:

U2C_SUCCESS

Operation was successfully completed and pLi st is filled with valid data.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_BAD_PARAMETER

I°C transactions list is too big.

3.4. I2C low level routines

» U2C_Start()

* U2C_RepeatedStart()
» U2C_Stop()

+ U2C_PutByte()

* U2C_GetByte()

» U2C_PutByteWithAck()
+ U2C_GetByteWithAck()
* U2C_PutAck()

. U2C_GetAck()

3.4.1. U2C_Start()

U2C RESULT U2C Start (
HANDLE hDevi ce

)

The U2C St art () function generates start condition on the 1°C bus.

Parameters:

hDevice
Handle to the U2C-12 device.

Return values:

U2C_SUCCESS

Start condition was successfully generated.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

Diolanm

W

Copyright © 2009 Diolan



API Documentation

3.4.2. U2C_RepeatedStart()

U2C RESULT W2C RepeatedStart (
HANDLE hDevi ce

)

The U2C _Repeat edSt art () function generates repeated start condition on the 1°C bus.

Parameters:

hDevice
Handle to the U2C-12 device.

Return values:

U2C_SUCCESS

Repeated start condition was successfully generated.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.4.3. U2C_Stop()

U2C RESULT U2C St op(
HANDLE hDevi ce

)

The U2C_St op() function generates stop condition on I°C bus. You can also use this function to generate
repeated stop condition.

Parameters:

hDevice
Handle to the U2C-12 device.

Return values:

U2C_SUCCESS

Stop condition was successfully generated.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.4.4. U2C_PutByte()

U2C RESULT U2C Put Byt e(
HANDLE hDevi ce,
BYTE Dat a

The U2C_Put Byt e() function shifts out (transmits) a single byte to I°C bus. It assumes that the bus
is available and Start Condition has been generated first. This function doesn't check acknowledge

Diolanm

W

Copyright © 2009 Diolan 41



API Documentation

from 1°C slave device, so you must call the U2C_GetAck() function to check acknowledge or to use
u2c PutByteW|thAck() instead of U2C_Put Byt e() function. ThIS function can be called several times to
implement custom 1°C-like protocol. The function does not finish | 2C bus transaction after transmission, so
at the end of I°C transaction U2C _Stop() function has to be called.

Parameters:

hDevice
Handle to the U2C-12 device.

Data
Byte value to be transmitted to the I°C bus.

Return values:

U2C_SUCCESS

Byte was successfully transmitted to the 1°C bus.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.4.5. U2C_GetByte()

U2C RESULT W2C GCet Byt e(
HANDLE hDevi ce,
BYTE* pDat a

The U2C_Get Byt e() function shifts in (reads) a single byte from I°C bus. It assumes that the bus
is available, Start Condition has been previously generated and the slave device has been properly
addressed. This function doesn't generate acknowledge, so you must call the U2C_PutAck() function or
use U2C_GetByteWithAck() mstead of U2C_Get Byt e() function. This functlon can be called several
times to implement custom | C like protocol. The function does not finish | 2C pus transaction after
transmission, so at the end of | 2C transaction U2C Stop() function has to be called.

Parameters:

hDevice
Handle to the U2C-12 device.

pData
A pointer to byte to be filled with data read from the | 2C pus.

Return values:

U2C_SUCCESS

Byte was successfully read from I°C bus.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.4.6. U2C_PutByteWithAck()

W

U2C_RESULT U2C_Put Byt eW t hAck(
HANDLE hDevi ce,

Diolan Copyright © 2009 Diolan 42



API Documentation

BYTE Dat a
)

The U2C_Put Byt eWt hAck() function shifts out (transmits) a single byte to | 2C bus and checks for
acknowledge from | 2C slave device. It assumes that the bus is available and Start Condition has been
generated first. This function can be called several times to implement custom | 2c.- Ilke protocol. The
function does not finish the I°C bus transaction after transmission, so at the end of | 2C transaction
U2C_Stop() function has to be called.

Parameters:

hDevice
Handle to the U2C-12 device.

Data
Byte value to be transmitted to the I°C bus.

Return values:

U2C_SUCCESS

Byte was successfully transmitted to the I°C bus and 1°C slave device provided acknowledge.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

U2C_NO_ACK

I°C slave device did not acknowledge the transmitted byte.

3.4.7. U2C_GetByteWithAck()

W

U2C RESULT W2C Get Byt eW t hAck(
HANDLE hDevi ce,
BYTE* pDat a,
BOOL bAck

)

The U2C_Get Byt eW t hAck() function shifts in (reads) a single byte from the I°C bus and then generates
acknowledge or not-acknowledge condition according to the value passed in bAck parameter. It assumes
that the bus is available, Start Condition has been previously generated and the slave deV|ce has been
properly addressed. This functlon can be called several times to implement custom | C like protocol.
The function does not finish the 1°C bus transaction after transmission, so at the end of | 2C transaction
U2C_Stop() function has to be called.

Parameters:

hDevice
Handle to the U2C-12 device.

pData
A pointer to byte to be filled with data read from the | 2C pus.

bAck
This parameter determines if acknowledge should be generated after the byte is transmitted. If bAck
is TRUE - acknowledge will be generated, if bAck is FALSE - non-acknowledge will be generated.

Return values:

Diolan Copyright © 2009 Diolan 43



API Documentation

U2C_SUCCESS
Byte was successfully read from I°C bus.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.4.8. U2C_PutAck()

U2C RESULT U2C Put Ack(
HANDLE hDevi ce,
BOOL bAck

)

The U2C_Put Ack() function generates acknowledge or not- acknowledge condition according to the value
passed in bAck parameter. This function does not finish the I°C bus transaction after transmission, so at
the end of I°C transaction U2C _Stop() function has to be called.

Parameters:

hDevice
Handle to the U2C-12 device.

bAck

This parameter determines whether acknowledge or non-acknowledge should be generated. If bAck
is TRUE - acknowledge will be generated, if bAck is FALSE - non-acknowledge will be generated.

Return values:

U2C_SUCCESS

Acknowledge / non-acknowledge condition was successfully generated.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.4.9. U2C_GetAck()

U2C RESULT U2C Get Ack(
HANDLE hDevi ce,

)

The U2C Get Ack() function checks for acknowledge from | C slave device. This function does not finish

the 1°C bus transaction after transmission, so at the end of | 2C transaction U2C ~Stop() function has to
be called.

Parameters:

hDevice
Handle to the U2C-12 device.

Return values:
U2C SUCCESS

I°C slave device provided acknowledge.

Diolanm

W

Copyright © 2009 Diolan 44



API Documentation

U2C_HARDWARE_NOT_FOUND
U2C-12 device referenced by hDevi ce handle was not found.
U2C_NO_ACK

I°C slave device did not provide acknowledge.

3.5. I2C wire level routines

. U2C_ReadScl()

U2C_ReadSda()

» U2C_ReleaseScl()

U2C_ReleaseSda()

U2C_DropScl()

U2C_DropSda()

3.5.1. U2C_ReadScl()

U2C RESULT U2C ReadScl (
HANDLE hDevi ce,
U2C LI NE_STATE* pState

Ik
The U2C_ReadScl () function checks the current state of the I°C bus SCL line.

Parameters:

hDevice
Handle to the U2C-12 device.

pState
Pointer to the location to be filled with the SCL line state:

* LS RELEASED - SCL line is released (high).

* LS DROPPED BY_ 12C_BRIDGE - U2C-12 device has pulled down the SCL line.

« LS DROPPED BY SLAVE - | 2 C slave device has pulled down the SCL line.

Return values:

U2C_SUCCESS

The SCL line state was successfully read.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.5.2. U2C_ReadSda()

W

U2C_RESULT U2C_ReadSda(

Diolanm

Copyright © 2009 Diolan

45



API Documentation

HANDLE hDevi ce,
U2C LI NE_STATE* pState
)

The U2C_ReadSda() function checks the current state of the I°C bus SDA line.

Parameters:

hDevice
Handle to the U2C-12 device.

pState
Pointer to the location to be filled with the SDA line state:

* LS RELEASED - SDA line is released (high).
* LS DROPPED BY 12C_BRIDGE - U2C-12 device has pulled down the SDA line.
* LS DROPPED BY SLAVE - | 2 C slave device has pulled down the SDA line.

Return values:

U2C_SUCCESS

The SDA line state was successfully read.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.5.3. U2C_ReleaseScl()

U2C RESULT W2C Rel easeScl (
HANDLE hDevi ce

)

The U2C_Rel easeScl () function releases the SCL line of the I°C bus. If the SCL line is not pulled down
by 1°C slave device, it will get high.

Parameters:

hDevice
Handle to the U2C-12 device.

Return values:

U2C_SUCCESS

The SCL line was successfully released.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.5.4. U2C_ReleaseSda()

U2C RESULT W2C Rel easeSda(
HANDLE hDevi ce
)15

Diolanm

W

Copyright © 2009 Diolan 46



API Documentation

The U2C_Rel easeSda() function releases the SDA line of the I°C bus. If the line is not pulled down by
I°C slave device, it will get high.

Parameters:

hDevice
Handle to the U2C-12 device.

Return values:

U2C_SUCCESS

The SDA line was successfully released.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.5.5. U2C_DropScl()

U2C RESULT U2C DropScl (
HANDLE hDevi ce
)

The U2C DropScl () function pulls down the 1°C bus SCL line.

Parameters:

hDevice
Handle to the U2C-12 device.

Return values:

U2C_SUCCESS

The SCL line was successfully dropped.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.5.6. U2C_DropSda()

U2C RESULT U2C Dr opSda(
HANDLE hDevi ce
)

The U2C _Dr opSda() function pulls down the 1°C bus SDA line.

Parameters:

hDevice
Handle to the U2C-12 device.

Return values:
U2C_SUCCESS

Diolanm

W

Copyright © 2009 Diolan 47



API Documentation

The SDA line was successfully dropped.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.6. GPIO routines

U2C_SetloDirection()

» U2C_GetloDirection()

* U2C_loWrite()

* U2C_loRead()

» U2C_SetSingleloDirection()
* U2C_GetSingleloDirection()
* U2C_SingleloWrite()

» U2C_SingleloRead()

3.6.1. U2C_SetloDirection()

U2C RESULT W2C Set | oDirection(
HANDLE hDevi ce,
ULONG Val ue,
ULONG Mask

)

The U2C_Set | oDi recti on() function configures input/output direction of the GPIO port pins.

Parameters:

hDevice
Handle to the U2C-12 device.

Value
An unsigned long value specifying the direction of the GPIO pins. Value is treated as unsigned long
O0xXXCCBBAA, where CC, BB and AA correspond to the C, B and A port pins:

* AA bits 7..0 correspond to Port A pins 7..0
» BB bits 7..0 correspond to Port B pins 7..0
» CC bits 7..0 correspond to Port C pins 7..0

* XX bits 7..0 reserved
Bit set to 1 indicates configuration of the corresponding pin as output. Bit set to 0 indicates
configuration of the corresponding pin as input.

Mask
An unsigned long value specifying the data mask to use when modifying the GPIO pins direction. The
mask value allows modification of the desired pins only, leaving rest of the pins unchanged. The bit
mapping for Mask parameter is exactly the same as for Val ue parameter. Only direction of the pins
with the mask bit set to 1 will be changed.

Diolanm

W

Copyright © 2009 Diolan 48



API Documentation

Return values:

U2C_SUCCESS

The GPIO pins direction was successfully modified.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.6.2. U2C_GetloDirection()

U2C RESULT W2C GetloDirection(
HANDLE hDevi ce,
ULONG* pVal ue

)

The U2C _Get | oDi recti on() function obtains current input/output direction of the GPIO port pins.

Parameters:

hDevice
Handle to the U2C-12 device.

pValue
A pointer to unsigned long to be filled with the direction of the GPIO pins. pVal ue is treated as unsigned
long OXXXCCBBAA, where CC, BB and AA correspond to the C, B and A port pins:

* AA bits 7..0 correspond to Port A pins 7..0
» BB bits 7..0 correspond to Port B pins 7..0
* CC bits 7..0 correspond to Port C pins 7..0

* XX bits 7..0 reserved
Bit set to 1 indicates configuration of the corresponding pin as output. Bit set to 0 indicates
configuration of the corresponding pin as input.

Return values:

U2C_SUCCESS

The GPIO pins direction was successfully read.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.6.3. U2C_loWrite()

U2C RESULT U2C | oWt e(
HANDLE hDevi ce,
ULONG Val ue,
ULONG Mask

)

The U2C | oW it e() sets the output value of the GPIO port pins. Pins have to be configured as output
using the U2C_SetloDirection() function first.

Diolanm

W

Copyright © 2009 Diolan 49



API Documentation

Parameters:

hDevice
Handle to the U2C-12 device.

Value

An unsigned long value specifying the value to be set to the GPIO pins. Value is treated as unsigned
long OXXXCCBBAA, where CC, BB and AA correspond to the C, B and A port pins:

» AA bits 7..0 correspond to Port A pins 7..0
» BB bits 7..0 correspond to Port B pins 7..0
* CC bits 7..0 correspond to Port C pins 7..0
* XX bits 7..0 reserved

Mask

An unsigned long value specifying the data mask to use when modifying the GPIO pins output value.
The mask value allows modification of the desired pins only, leaving rest of the pins unchanged. The

bit mapping for Mask parameter is exactly the same as for Val ue parameter. Only value of the pins
with mask bit set to 1 will be changed.

Return values:
U2C_SUCCESS

The GPIO pins output value was successfully modified.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.6.4. U2C_loRead()

U2C _RESULT U2C_ | oRead(
HANDLE hDevi ce,
ULONG* pVal ue

The U2C_| oRead() function obtains the value of the GPIO port pins.

Parameters:

hDevice
Handle to the U2C-12 device.

pValue

A pointer to unsigned long to be filled with the value of the GPIO pins. pVal ue is treated as unsigned
long OXXXCCBBAA, where CC, BB and AA correspond to the C, B and A port pins:

* AA bits 7..0 correspond to Port A pins 7..0
» BB bits 7..0 correspond to Port B pins 7..0
* CC bits 7..0 correspond to Port C pins 7..0
* XX bits 7..0 reserved

Return values:

W

Diolan Copyright © 2009 Diolan >0



API Documentation

U2C_SUCCESS
The GPIO pins state was successfully read.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.6.5. U2C_SetSingleloDirection()

U2C RESULT W2C Set Si ngl el oDi recti on(
HANDLE hDevi ce,
ULONG | oNumber ,
BOOL bCut put

)

The U2C_Set Si ngl el oDi recti on() function configures input/output direction of the specified GPIO
pin.

Parameters:

hDevice
Handle to the U2C-12 device.

loNumber
The number of the GPIO pin to change direction:

* Numbers 0..7 correspond to Port A pins 0..7
* Numbers 8..15 correspond to Port B pins 0..7
* Number 16..23 correspond to Port C pins 0..7

bOutput
The direction of the GPIO pin:

* bOutput = TRUE configures the GPIO pin for output

» bOutput = FALSE configures the GPIO pin for input

Return values:

U2C_SUCCESS

The GPIO pin direction was successfully modified.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_BAD_PARAMETER

| oNunber is out of range.

3.6.6. U2C_GetSingleloDirection()

U2C_RESULT U2C _Cet Si ngl el oDi recti on(
HANDLE hDevi ce,
ULONG | oNunber,
BOOL* pbQut put

Diolanm

W

Copyright © 2009 Diolan 51



API Documentation
)

The U2C_Get Si ngl el oDi recti on() function obtains input/output direction of the specified GPIO pin.

Parameters:

hDevice
Handle to the U2C-12 device.

loNumber
The number of the GPIO pin to obtain direction:

* Numbers 0..7 correspond to Port A pins 0..7
* Numbers 8..15 correspond to Port B pins 0..7
* Number 16..23 correspond to Port C pins 0..7

pbOutput
A pointer to the boolean to be filled with the direction of the GPIO pin:

* *pbOutput = TRUE indicates that the GPIO pin is configured for output
* *pbOutput = FALSE indicates that the GPIO pin is configured for input

Return values:

U2C_SUCCESS

The GPIO pin direction was successfully read.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_BAD_PARAMETER

| oNunber is out of range.

3.6.7. U2C_SingleloWrite()

U2C RESULT W2C Singl el oWite(
HANDLE hDevi ce,
ULONG | oNunber,
BOOL Val ue

)

The U2C Si ngl el oWite() function sets the output value of the specified GPIO pin. Pin must be
configured as output using U2C_SetloDirection() or U2C_SetSingleloDirection() functions first.

Parameters:

hDevice
Handle to the U2C-12 device.

loNumber
The number of the GPIO pin to set output value to:

* Numbers 0..7 correspond to Port A pins 0..7

* Numbers 8..15 correspond to Port B pins 0..7

Diolanm

W

Copyright © 2009 Diolan 52



API Documentation

* Number 16..23 correspond to Port C pins 0..7

Value
The GPIO pin new output value.

Return values:

U2C_SUCCESS

The GPIO pin output value was successfully modified.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_BAD_PARAMETER

| oNunber is out of range.

3.6.8. U2C_SingleloRead()

U2C RESULT W2C_Si ngl el oRead(
HANDLE hDevi ce,
ULONG | oNunber,
BOOL* pVal ue

)

The U2C_Si ngl el oRead() function obtains the value of the specified GPIO pin.

Parameters:

hDevice
Handle to the U2C-12 device.

loNumber
The number of the GPIO pin to obtain value from:

* Numbers 0..7 correspond to Port A pins 0..7
* Numbers 8..15 correspond to Port B pins 0..7
* Number 16..23 correspond to Port C pins 0..7

pValue
A pointer to boolean to be filled with the GPIO pin state.

Return values:

U2C_SUCCESS

The GPIO pin state was successfully read.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_BAD_PARAMETER

| oNunber is out of range.

3.7. SPI bus configuration routines

» U2C_SpiSetConfig()

Diolanm

W

Copyright © 2009 Diolan

53



API Documentation

» U2C_SpiGetConfig()

» U2C_SpiSetConfigEx()
» U2C_SpiGetConfigEx()
» U2C_SpiSetFreq()

» U2C_SpiGetFreq()

» U2C_SpiConfigSS()

3.7.1. U2C_SpiSetConfig()

U2C RESULT U2C _Spi Set Confi g(
HANDLE hDevi ce,
BYTE CPQL,
BYTE CPHA

The U2C_Spi Set Confi g() function configures SPI bus clock polarity and phase.

Parameters:

hDevice
Handle to the U2C-12 device.

CPOL
Clock polarity value determines the CLK line idle state, where:

* 0 corresponds to "idle low"
* 1 corresponds to "idle high"

CPHA
Clock phase value determines the clock edge when the data is valid on the bus, where:

» 0 corresponds to valid data available on leading edge

» 1 corresponds to valid data available on trailing edge

Return values:

U2C_SUCCESS

The SPI bus was successfully configured.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.7.2. U2C_SpiGetConfig()

W

U2C RESULT U2C Spi Get Confi g(
HANDLE hDevi ce,
BYTE* pCPQOL,
BYTE* pCPHA

Diolan Copyright © 2009 Diolan

54



API Documentation
)

The U2C_Spi Get Confi g() function obtains SPI bus configuration (clock polarity and phase).

Parameters:

hDevice
Handle to the U2C-12 device.

pCPOL

A pointer to the byte to be filled with current SPI bus clock polarity setting. Clock polarity determines
the CLK line idle state, where:

* 0 corresponds to "idle low"
* 1 corresponds to "idle high"

pCPHA

A pointer to byte to be filled with current SPI bus clock phase setting. Clock phase value determines
the clock edge when the data is valid on the bus, where:

» 0 corresponds to valid data available on leading edge
* 1 corresponds to valid data available on trailing edge

Return values:

U2C_SUCCESS

The SPI bus configuration was successfully obtained.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.7.3. U2C_SpiSetConfigEx()

U2C RESULT W2C Spi Set Confi gEX(
HANDLE hDevi ce,
DWORD Confi g

)

The U2C_Spi Set Conf i gEx() function enables/disables and configures SPI interface.

Parameters:

hDevice
Handle to the U2C-12 device.

Config
SPI configuration bits:

* Bit 0: CPOL bit - Clock polarity. Determines the CLK line idle state:
* 0 corresponds to idle low
* 1 corresponds to idle high

» Bit 1: CPHA bit - Clock phase. Determines the valid data clock edge:

Diolanm

W

Copyright © 2009 Diolan 55



API Documentation

» 0 corresponds to valid data available on leading edge
* 1 corresponds to valid data available on trailing edge
* Bit 2: SPI Disable bit.
+ 0 corresponds to SPI Enable. MOSI and CLK pins are outputs.
» 1 corresponds to SPI Disable. All SPI interface pins are inputs.
» Bits 3..31: Reserved Bits - should be 0.

Return values:

U2C_SUCCESS

SPI bus was successfully configured.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.7.4. U2C_SpiGetConfigEx()

W

U2C RESULT U2C Spi Get Confi gEX(
HANDLE hDevi ce,
DWORD* pConfi g

)

The U2C_Spi Get Conf i gEx() function obtains SPI configuration.

Parameters:

hDevice
Handle to the U2C-12 device.

pConfig
A pointer to DWORD to be filled with current SPI configuration:

» Bit 0: CPOL bit - Clock polarity. Determines the CLK line idle state:
* 0 corresponds to idle low

* 1 corresponds to idle high

» Bit 1: CPHA bit - Clock phase. Determines the valid data clock edge:

+ 0 corresponds to valid data available on leading edge
» 1 corresponds to valid data available on trailing edge
* Bit 2: SPI Disable bit.
+ 0 corresponds to SPI Enable. MOSI and CLK pins are outputs.
» 1 corresponds to SPI Disable. All SPI interface pins are inputs.
* Bits 3..31: Reserved Bits.

Return values:

Diolanm

Copyright © 2009 Diolan

56



API Documentation

U2C_SUCCESS
The SPI bus configuration was successfully obtained.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.7.5. U2C_SpiSetFreq()

U2C RESULT W2C Spi Set Freq(
HANDLE hDevi ce,
BYTE Fr equency

)

The U2C_Spi Set Freq() function configures SPI bus frequency.

Parameters:

hDevice
Handle to the U2C-12 device.

Frequency
The frequency of SPI bus, where:

» 0 corresponds to SPI bus frequency of 200 kHz.
» 1 corresponds to SPI bus frequency of 100 kHz.

* 1+n corresponds to the SPI bus clock period equal to 10 + 2*n uS.
For convenience following constants were introduced:

U2C_SPI_FREQ_200KHZ 200 kHz
U2C_SPI_FREQ_100KHZ 100 kHz
U2C_SPI_FREQ_83KHZ 83 kHz
U2C_SPI_FREQ_71KHZ 71 kHz
U2C_SPI_FREQ_62KHZ 62 kHz
U2C_SPI_FREQ_50KHZ 50 kHz
U2C_SPI_FREQ_25KHZ 25 kHz
U2C_SPI_FREQ_10KHZ 10 kHz
U2C_SPI_FREQ_5KHZ 5 kHz
U2C_SPI_FREQ_2KHZ 2 kHz

Return values:

U2C_SUCCESS

The SPI bus frequency value was successfully set.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.7.6. U2C_SpiGetFreq()

U2C_RESULT U2C_Spi CGet Fr eq(
HANDLE hDevi ce,
BYTE* pFrequency

= [Jjolan

W

Copyright © 2009 Diolan



API Documentation

)

The U2C_Spi CGet Freq() function obtains SPI bus frequency.

Parameters:

hDevice
Handle to the U2C-12 device.

pFrequency
A pointer to byte to be filled with the current SPI bus frequency, where:

» 0 corresponds to SPI bus frequency of 200 kHz.
» 1 corresponds to SPI bus frequency of 100 kHz.

» 1+n corresponds to the SPI bus clock period equal to 10 + 2*n uS.
For convenience following constants were introduced:

U2C_SPI_FREQ_200KHZ 200 kHz
U2C_SPI_FREQ_100KHZ 100 kHz
U2C_SPI_FREQ_83KHZ 83 kHz
U2C_SPI_FREQ_71KHZ 71 kHz
U2C_SPI_FREQ_62KHZ 62 kHz
U2C_SPI_FREQ_50KHZ 50 kHz
U2C_SPI_FREQ_25KHZ 25 kHz
U2C_SPI_FREQ_10KHZ 10 kHz
U2C_SPI_FREQ_5KHZ 5 kHz
U2C_SPI_FREQ_2KHZ 2 kHz

Return values:

U2C_SUCCESS

The SPI bus frequency value was successfully retrieved.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

3.7.7. U2C_SpiConfigSS()

U2C RESULT U2C Spi Confi gSS(
HANDLE hDevi ce,
ULONG | oNunber ,
BOOL ActiveHi gh

)

The U2C_Spi Confi gSS() function configures GPIO pin specified by | oNunber as SPI Bus Slave Select
(Master Select) signal.

To benefit from Slave Select signal during SPI communication you should use Slave Select aware functions
set:

» U2C_SpiReadWriteSS()

« U2C_SpiWriteSS()

Diolanm

W

Copyright © 2009 Diolan 58




API Documentation

. U2C_SpiReadSSs()

Slave Select pin remains unchanged if you call U2C_SpiReadWrite(), U2C_SpiWrite() or U2C_SpiRead()
function. This can be useful if you want to send or receive several buffers through SPI Bus changing Slave
Select pin only once. You can use GPIO routines to work with Slave Select signal in such a case.

You can configure any number of pins for Slave Select signal and specify different pins for each SPI
transaction.

Parameters:

hDevice
Handle to the U2C-12 device.

loNumber
GPIO pin to be configured as Slave Select (Master Select) signal.

* Numbers 0..7 correspond to Port A pins 0..7
* Numbers 8..15 correspond to Port B pins 0..7
* Number 16..23 correspond to Port C pins 0..7

ActiveHigh
This parameter determines the active state of the Slave Select signal (state during the SPI transfer).
If Acti veHi gh is TRUE - Slave Select pin value will be changed from logical "0" to logical "1" before
SPI transaction and returned back to logical "0" after the data is transmitted. If Act i veHi gh is FALSE
- Slave Select pin value will be changed from logical "1" to logical "0" before SPI transaction and
returned back to logical "1" after the data is transmitted.

Return values:

U2C_SUCCESS

The Slave Select pin was successfully configured.

U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

U2C_BAD_PARAMETER

| oNunber is out of range.

3.8. SPI data transfer routines

» U2C_SpiReadWrite()

U2C_SpiWrite()

» U2C_SpiRead()

U2C_SpiReadWriteSS()
» U2C_SpiWriteSS()

» U2C_SpiReadSS()

3.8.1. U2C_SpiReadWrite()

W

U2C RESULT U2C_Spi ReadWi t e(

Diolanm

Copyright © 2009 Diolan 59



API Documentation

HANDLE hDevi ce,

BYTE* pCQut Buf fer,
BYTE* pl nBuffer,

unsi gned short Length

)

The U2C_Spi ReadW i t e() function shifts out (writes) and in (reads) a stream of up to 256 bytes to/from
the SPI slave device.

Parameters:

hDevice
Handle to the U2C-12 device.

pOutBuffer
Pointer to the buffer containing the data to be shifted out to the SPI slave device.

pInBuffer
Pointer to the buffer that receives the data shifted in from the SPI slave device.

Length
Number of bytes to be transferred via SPI bus. Maximum value is 256.

Return values:

U2C_SUCCESS

The data was successfully transmitted via SPI bus.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_BAD_PARAMETER

Lengt h parameter is out of range.

3.8.2. U2C_SpiWrite()

U2C RESULT U2C_Spi Wit e(
HANDLE hDevi ce,
BYTE* pCQut Buf f er,
unsi gned short Length

The U2C_Spi Wi t e() function shifts out (writes) a stream of up to 256 bytes to the SPI slave device.

Parameters:

hDevice
Handle to the U2C-12 device.

pOutBuffer
Pointer to the buffer containing the data to be shifted out to the SPI slave device.

Length
Number of bytes to be shifted out to the SPI slave device. Maximum value is 256.

Return values:

Diolanm

W

Copyright © 2009 Diolan 60



API Documentation

U2C_SUCCESS

The data was successfully written to the SPI slave device.
U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.
U2C_BAD_PARAMETER

Lengt h parameter is out of range.

3.8.3. U2C_SpiRead()

U2C RESULT W2C Spi Read(
HANDLE hDevi ce,
BYTE* pl nBuffer,
unsi gned short Length

)

The U2C_Spi Read() function shifts in (reads) a stream of up to 256 bytes from the SPI slave device.

Parameters:

hDevice
Handle to the U2C-12 device.

pInBuffer
Pointer to the buffer that receives the data shifted in from the SPI slave device.

Length

Number of bytes to be shifted in. Maximum value is 256.
Return values:
U2C_SUCCESS
The data was successfully read.
U2C_HARDWARE_NOT_FOUND
U2C-12 device referenced by hDevi ce handle was not found.
U2C_BAD_PARAMETER

Lengt h parameter is out of range.

3.8.4. U2C_SpiReadWriteSS|()

U2C RESULT WU2C Spi ReadW it eSS(
HANDLE hDevi ce,
BYTE* pCQut Buffer,
BYTE* pl nBuffer,
WORD Lengt h
ULONG | oNumber
BOCL Acti veHi gh

)

The U2C_Spi ReadW i t eSS() function shifts out (writes) and in (reads) a stream of up to 256 bytes to/
from the SPI slave device.

Diolanm

W

Copyright © 2009 Diolan 61



API Documentation

In contrast to U2C_SpiReadWrite() function, UI2C_Spi ReadW i t eSS() also selects the SPI slave device
to communicate with. Slave Select pin should be preconfigured with U2C_SpiConfigSS() function. You can
configure any number of pins for Slave Select signal and specify different pins for each SPI transaction.

Use U2C_SpiReadWrite() function if you don't want to involve slave device selection into SPI transaction.
This can be useful if you want to send or receive several buffers through SPI Bus changing Slave Select
pin only once. You can use GPIO routines to work with Slave Select pin in such a case.

Parameters:

hDevice
Handle to the U2C-12 device.

pOutBuffer
Pointer to the buffer containing the data to be shifted out to the SPI slave device.

pinBuffer
Pointer to the buffer that receives the data shifted in from the SPI slave device.

Length
Number of bytes to be transferred via SPI bus. Maximum value is 256.

loNumber
GPIO pin to be used for SPI slave device selection.

* Numbers 0..7 correspond to Port A pins 0..7
* Numbers 8..15 correspond to Port B pins 0..7
* Number 16..23 correspond to Port C pins 0..7

ActiveHigh
This parameter determines the active state of the Slave Select pin (state during the SPI transfer). If
Act i veHi gh is TRUE - Slave Select pin value will be changed from logical "0" to logical "1" before
SPI transaction and returned back to logical "0" after the data is transmitted. If Act i veHi gh is FALSE
- Slave Select pin value will be changed from logical "1" to logical "0" before SPI transaction and
returned back to logical "1" after the data is transmitted.

Return values:

U2C_SUCCESS

The data was successfully transmitted via SPI bus.

U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

U2C_BAD_PARAMETER

Lengt h or | oNunber parameter is out of range.

3.8.5. U2C_SpiWriteSS()

W

U2C RESULT W2C Spi Wit eSS(
HANDLE hDevi ce,
BYTE* pCQut Buf f er,
WORD Lengt h
ULONG | oNunber
BOCL Acti veHi gh

Diolanm

Copyright © 2009 Diolan 62



API Documentation

The U2C _Spi Wit eSS() function shifts out (writes) a stream of up to 256 bytes to the SPI slave device.

In contrast to U2C_SpiWrite() function, U2C Spi Wit eSS() also selects the SPI slave device to
communicate with. Slave Select pin should be preconfigured with U2C_SpiConfigSS() function. You can
configure any number of pins for Slave Select signal and specify different pins for each SPI transaction.

Use U2C_SpiWrite() function if you don't want to involve slave device selection into SPI transaction. This
can be useful if you want to send several buffers through SPI Bus changing Slave Select pin only once.
You can use GPIO routines to work with Slave Select pin in such a case.

Parameters:

hDevice
Handle to the U2C-12 device.

pOutBuffer
Pointer to the buffer containing the data to be shifted out to the SPI slave device.

Length
Number of bytes to be shifted out to the SPI slave device. Maximum value is 256.

loNumber
GPIO pin to be used for SPI slave device selection.

* Numbers 0..7 correspond to Port A pins 0..7
* Numbers 8..15 correspond to Port B pins 0..7
* Number 16..23 correspond to Port C pins 0..7

ActiveHigh
This parameter determines the active state of the Slave Select pin (state during the SPI transfer). If
Acti veHi gh is TRUE - Slave Select pin value will be changed from logical "0" to logical "1" before
SPI transaction and returned back to logical "0" after the data is transmitted. If Act i veHi gh is FALSE
- Slave Select pin value will be changed from logical "1" to logical "0" before SPI transaction and
returned back to logical "1" after the data is transmitted.

Return values:

U2C_SUCCESS

The data was successfully written to the SPI slave device.

U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

U2C_BAD_PARAMETER

Lengt h or | oNunber parameter is out of range.

3.8.6. U2C_SpiReadS$§()

W

U2C RESULT U2C_Spi ReadSS(
HANDLE hDevi ce,
BYTE* pl nBuffer,
WORD Lengt h
ULONG | oNumber
BOOL ActiveHi gh

The U2C_Spi ReadSS() function shifts in (reads) a stream of up to 256 bytes from the SPI slave device.

Diolanm

Copyright © 2009 Diolan 63



W

API Documentation

In contrast to U2C_SpiRead() function, U2C Spi ReadSS() also selects the SPI slave device to
communicate with. Slave Select pin should be preconfigured with U2C_SpiConfigSS() function. You can
configure any number of pins for Slave Select signal and specify different pins for each SPI transaction.

Use U2C_SpiRead() function if you don't want to involve slave device selection into SPI transaction. This
can be useful if you want to receive several buffers through SPI Bus changing Slave Select pin only once.
You can use GPIO routines to work with Slave Select pin in such a case.

Parameters:

hDevice
Handle to the U2C-12 device.

pInBuffer
Pointer to the buffer that receives the data shifted in from the SPI slave device.

Length
Number of bytes to be shifted in. Maximum value is 256.

loNumber
GPIO pin to be used for SPI slave device selection.

* Numbers 0..7 correspond to Port A pins 0..7
* Numbers 8..15 correspond to Port B pins 0..7
* Number 16..23 correspond to Port C pins 0..7

ActiveHigh
This parameter determines the active state of the Slave Select pin (state during the SPI transfer). If
Acti veHi gh is TRUE - Slave Select pin value will be changed from logical "0" to logical "1" before
SPI transaction and returned back to logical "0" after the data is transmitted. If Act i veHi gh is FALSE
- Slave Select pin value will be changed from logical "1" to logical "0" before SPI transaction and
returned back to logical "1" after the data is transmitted.

Return values:

U2C_SUCCESS

The data was successfully read.

U2C_HARDWARE_NOT_FOUND

U2C-12 device referenced by hDevi ce handle was not found.

U2C_BAD_PARAMETER

Lengt h or | oNunber parameter is out of range.

Diolan Copyright © 2009 Diolan 64



Chapter 4. Electrical Characteristics

Absolute Maximum Ratings:

Parameter Min Max
Storage Temperature -65°C +150°C
Ambient Temperature Under Bias -40°C +85°C
DC Input Voltage to Any Pin -0.5V +5.8V
Operating Conditions:
Parameter Min Max
Ta (Ambient Temperature Under Bias) 0°C +70°C
I°C Interface Characteristics:
Symbol Parameter Condition Min Max
Viy Input High Voltage 2.0V 5.25V
Vi Input Low Voltage -0.5V 0.8V
VoHi Output High Voltage Internal VCC 3.3V 5V
VoHe Output High Voltage External VCC 2.0V 5V
VoL Output Low Voltage 0.4V
Freq 1°C Bus Frequency configurable 2kHz 400kHz
SPI Interface Characteristics:
Symbol Parameter Condition Min Max
Vi Input High Voltage 2.0V 5.25V
Vi Input Low Voltage -0.5V 0.8v
VoH Output High Voltage lout=1.6mA 2.4V
VoL Output Low Voltage lout=-1.6mA 0.4v
Freq SPI Bus Frequency configurable 2kHz 200kHz
GPIO Characteristics:
Symbol Parameter Condition Min Max
Viy Input High Voltage 2.0V 5.25V
Vi Input Low Voltage -0.5Vv 0.8v
Vou Output High Voltage lout=1.6mA 2.4V
VoL Output Low Voltage lout=-1.6mA 0.4V
2 Diolan , .
E 4 Copyright © 2009 Diolan



	U2C-12 USB-I2C/SPI/GPIO Interface Adapter Users Manual
	Table of Contents
	Introduction
	Chapter 1. I2C Bridge Software and U2C-12 Hardware Drivers Installation
	1.1. System Requirements
	1.2. Software Installation
	1.2.1. Driver Signing Settings
	1.2.2. Installing I2C Bridge

	1.3. Hardware Drivers Installation

	Chapter 2. Control Panel Application
	2.1. Control Panel User Interface
	2.1.1. Control Panel Main Window
	2.1.2. Main Menu and Toolbar

	2.2. Control Panel Instruments
	2.2.1. "I2C Configuration" Dialog Window
	2.2.2. "SPI Bus Configuration" Dialog Window
	2.2.3. "I2C Bridge Devices" Bar
	2.2.4. "I2C Read" Bar
	2.2.5. "I2C Write" Bar
	2.2.6. "I2C Low Level" Bar
	2.2.7. "I2C Bus Level" Bar
	2.2.8. "SPI Bus" Bar


	Chapter 3. API Documentation
	3.1. U2C-12 device initialization routines
	3.1.1. U2C_GetDeviceCount()
	3.1.2. U2C_GetSerialNum()
	3.1.3. U2C_IsHandleValid()
	3.1.4. U2C_OpenDevice()
	3.1.5. U2C_OpenDeviceBySerialNum()
	3.1.6. U2C_CloseDevice()
	3.1.7. U2C_GetFirmwareVersion()
	3.1.8. U2C_GetDriverVersion()
	3.1.9. U2C_GetDllVersion()

	3.2. I2C bus configuration routines
	3.2.1. U2C_SetI2cFreq()
	3.2.2. U2C_GetI2cFreq()
	3.2.3. U2C_SetClockSynch()
	3.2.4. U2C_GetClockSynch()
	3.2.5. U2C_SetClockSynchTimeout()
	3.2.6. U2C_GetClockSynchTimeout()

	3.3. I2C high level routines
	3.3.1. U2C_Read()
	3.3.2. U2C_Write()
	3.3.3. U2C_ScanDevices()
	3.3.4. U2C_RW_Pack()

	3.4. I2C low level routines
	3.4.1. U2C_Start()
	3.4.2. U2C_RepeatedStart()
	3.4.3. U2C_Stop()
	3.4.4. U2C_PutByte()
	3.4.5. U2C_GetByte()
	3.4.6. U2C_PutByteWithAck()
	3.4.7. U2C_GetByteWithAck()
	3.4.8. U2C_PutAck()
	3.4.9. U2C_GetAck()

	3.5. I2C wire level routines
	3.5.1. U2C_ReadScl()
	3.5.2. U2C_ReadSda()
	3.5.3. U2C_ReleaseScl()
	3.5.4. U2C_ReleaseSda()
	3.5.5. U2C_DropScl()
	3.5.6. U2C_DropSda()

	3.6. GPIO routines
	3.6.1. U2C_SetIoDirection()
	3.6.2. U2C_GetIoDirection()
	3.6.3. U2C_IoWrite()
	3.6.4. U2C_IoRead()
	3.6.5. U2C_SetSingleIoDirection()
	3.6.6. U2C_GetSingleIoDirection()
	3.6.7. U2C_SingleIoWrite()
	3.6.8. U2C_SingleIoRead()

	3.7. SPI bus configuration routines
	3.7.1. U2C_SpiSetConfig()
	3.7.2. U2C_SpiGetConfig()
	3.7.3. U2C_SpiSetConfigEx()
	3.7.4. U2C_SpiGetConfigEx()
	3.7.5. U2C_SpiSetFreq()
	3.7.6. U2C_SpiGetFreq()
	3.7.7. U2C_SpiConfigSS()

	3.8. SPI data transfer routines
	3.8.1. U2C_SpiReadWrite()
	3.8.2. U2C_SpiWrite()
	3.8.3. U2C_SpiRead()
	3.8.4. U2C_SpiReadWriteSS()
	3.8.5. U2C_SpiWriteSS()
	3.8.6. U2C_SpiReadSS()


	Chapter 4. Electrical Characteristics

